1,068 research outputs found

    Theory of Reciprocating Contact for Viscoelastic Solids

    Full text link
    A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, never observed before, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.Comment: 8 pages, 5 figures, accepted for publication on Physical Review E, March 22, 201

    Synthesis and cytotoxic activity of 3-[2-(1H-Indol-3-yl)-1,3-thiazol-4-yl]-1H-pyrrolo[3,2-c]pyridine hydrobromides, analogues of the marine alkaloid nortopsentin

    Get PDF
    A new series of thiazole nortopsentin analogues with a 5-azaindole moiety was conveniently synthesized in good to excellent yields by an Hantzsch reaction between thioamides and \u3b1-bromoacetyl compounds. The cytotoxic activity of the new derivatives was tested against different human tumor cell lines of the NCI full panel. All tested compounds were active against all of the investigated cell lines showing GI50 values from micro to submicromolar levels. Some of the new analogues exhibited good selectivities against different NCI sub-panels

    HeritageBot platform for service in Cultural Heritage frames

    Get PDF
    A service robot for Cultural Heritage frames is proposed as a novel robotic platform with a modular design for both ground locomotion and flight capability. The peculiarities of the system are discussed by performance evaluation via simulation. A prototype has been built and tested both to prove the feasibility of the proposed design and to characterize its operation performance

    Data-mining approach to investigate sedimentation features in combined sewer overflows

    Get PDF
    Sedimentation is the most common and effectively practiced method of urban drainage control in terms of operating installations and duration of service. Assessing the percentage of suspended solids removed after a given detention time is essential for both design and management purposes. In previous experimental studies by some of the authors, the expression of iso-removal curves (i.e. representing the water depth where a given percentage of suspended solids is removed after a given detention time in a sedimentation column) has been demonstrated to depend on two parameters which describe particle settling velocity and flocculation factor. This study proposes an investigation of the influence of some hydrological and pollutant aggregate information of the sampled events on both parameters. The Multi-Objective (EPR-MOGA) and Multi-Case Strategy (MCS-EPR) variants of the Evolutionary Polynomial Regression (EPR) are originally used as data-mining strategies. Results are proved to be consistent with previous findings in the field and some indications are drawn for relevant practical applicability and future studies

    Molecules as building blocks for a CFD-PBE model to describe the effect of fluid dynamics on nanoparticle formation

    Get PDF
    Recently research efforts have focused on the effect of fluid dynamics on particle formation processes, by using special mixing devices, that allow to perform controlled experiments, and complex models, that allow to quantify its influence on the final particle size. The standard modelling approach consists in considering three different steps: nucleation, molecular growth and aggregation. This is usually done by simulating the process with a population balance equation (PBE) coupled with computational fluid dynamics (CFD), in which these three different steps are considered separately. The PBE is often written using as internal coordinate the actual particle size or volume; here, we propose a new modelling strategy that overcomes the concepts of nucleation and molecular growth, by using as internal coordinate the number of molecules which aggregate, or self-assemble, together forming a nanoparticle. The novel modelling approach is therefore defined as a purely-aggregative model

    Evaluating the Carbon Footprint of Cement Plants Integrated With the Calcium Looping CO2 Capture Process

    Get PDF
    Cement industry is estimated to account for∼6–7% of anthropogenic CO2emissionsglobally. Therefore, the identification of innovative solutions for their mitigation is both a priority and a challenge. The integration of carbon capture and storage technologies into the industrial production process is considered among the most viable solutions for this purpose, and calcium looping (CaL) represents one of the most promising. A key research challenge points to maximize process efficiencies and minimize production cost to decouple cement production from carbon emissions. The carbon capture process proposed in this work is a looping system where CO2 is absorbed by calcium oxide(CaO) in the first reactor (carbonator) and the calcium carbonate (CaCO3) produced is regenerated in an oxy-fired calciner. During calcination, CO2 is released from the sorbents, purified, compressed, and then made available for geological storage. In this study, greenhouse gas (GHG) emissions related to two cement production systems with CaL carbon capture are evaluated: the tail-end CaL carbon capture and the integratedCaL carbon capture. The carbon footprint is complemented with the assessment of the resources depletion mineral and elements and the demand of primary energy. An eco-design approach was pursued by carrying out a life cycle assessment to identify the environmental hotspots and which CaL integration approach presents a higher potential for cement industry decarbonization. The results of the analysis were compared with a conventional cement production process. The results show that the GHG emissions may be reduced by 74% with a tail-end approach and 71% when theCaL is fully integrated into the cement production process. When a future perspective, with higher penetration of renewable energy resources into the electricity sector, was modeled, the results showed that CaL integrated into the clinker production process is more promising in terms of reduction of the carbon footprint, rather than the tail-end solutions. Primary energy consumption from non-renewables is substantially impacted by CaL, with the integrated CaL configuration showing to be a more efficient solution because of less primary energy consumption (coal)

    Gravitational waves and geometrical optics in scalar-tensor theories

    Get PDF
    The detection of gravitational waves (GWs) propagating through cosmic structures can provide invaluable information on the geometry and content of our Universe, as well as on the fundamental theory of gravity. In order to test possible departures from General Relativity, it is essential to analyse, in a modified gravity setting, how GWs propagate through a perturbed cosmological space-time. Working within the framework of geometrical optics, we develop tools to address this topic for a broad class of scalar-tensor theories, including scenarios with non-minimal, derivative couplings between scalar and tensor modes. We determine the corresponding evolution equations for the GW amplitude and polarization tensor. The former satisfies a generalised evolution equation that includes possible effects due to a variation of the effective Planck scale; the latter can fail to be parallely transported along GW geodesics unless certain conditions are satisfied. We apply our general formulas to specific scalar-tensor theories with unit tensor speed, and then focus on GW propagation on a perturbed space-time. We determine corrections to standard formulas for the GW luminosity distance and for the evolution of the polarization tensor, which depend both on modified gravity and on the effects of cosmological perturbations. Our results can constitute a starting point to disentangle among degeneracies from different sectors that can influence GW propagation through cosmological space-times.Comment: 42 pages. V2: Improved discussion, in particular on gauge conditions, and references added. Results unchanged. V3: Updated version to be published in JCA

    A hybrid legged-wheeled obstacle avoidance strategy for service operations

    Get PDF
    Hybrid legged-wheeled robots are gaining interest in various service applications, like surveillance or inspection in hospitals. The autonomy of these robots is not only related to their power consumption, it mostly refers to their capability to safely move in complex partially structured environments. This paper proposes to investigate the combination of different moving strategies and sensors to enhance the adaptability and autonomy of a hybrid hexapod robot in specific environments shared with humans. Namely, this paper proposes a locomotion strategy that combines leg motions and Mecanum omniwheels with multiple sensory feedbacks to achieve safe obstacle avoidance during a service operation. Several experimental tests are carried out by using Cassino Hexapod III in combination with sonar, IMU and Lidar sensors at IRCCS Neuromed site in Pozzilli. Experimental results show the effectiveness of the proposed operation strategy with Cassino Hexapod III to avoid multiple obstacles
    • …
    corecore