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Data-mining approach to investigate sedimentation

features in combined sewer overflows

M. Carbone, L. Berardi, D. Laucelli and P. Piro
ABSTRACT
Sedimentation is the most common and effectively practiced method of urban drainage control in

terms of operating installations and duration of service. Assessing the percentage of suspended

solids removed after a given detention time is essential for both design and management purposes.

In previous experimental studies by some of the authors, the expression of iso-removal curves (i.e.

representing the water depth where a given percentage of suspended solids is removed after a given

detention time in a sedimentation column) has been demonstrated to depend on two parameters

which describe particle settling velocity and flocculation factor. This study proposes an investigation

of the influence of some hydrological and pollutant aggregate information of the sampled events

on both parameters. The Multi-Objective (EPR-MOGA) and Multi-Case Strategy (MCS-EPR) variants of

the Evolutionary Polynomial Regression (EPR) are originally used as data-mining strategies. Results

are proved to be consistent with previous findings in the field and some indications are drawn

for relevant practical applicability and future studies.
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NOTATION
a
 settling velocity of discrete particles [m/s]
aj
 ( j¼ 0,…,m) regression parameters of EPR

models
b
 flocculation factor
CoD
 coefficient of determination
CoDMCS
 coefficient of determination in MCS-EPR
Ei
 efficiency corresponding to the i-th iso-

removal curve
EMC
 event mean concentration
EPR
 Evolutionary Polynomial Regression
EPR-MOGA
 Multi-Objective Evolutionary Polynomial

Regression
EX
 user-defined set of exponents in EPR models
ES( j,i)
 exponent of the ith candidate input in the jth

term of EPR models
f
 user defined function in EPR models
h
 water depth in sedimentation column [m]
hp
 rainfall depth [mm]
iavg
 average rain intensity recorded during the

rain event [mm/h]
imax
 maximum rain intensity recorded during the

rain event [mm/h]
LC
 the Liguori Channel
m
 maximum number of terms in EPR models
M
 mass fraction removed by sedimentation

according to Stoke’s law
MCS-EPR
 Multi-Case Strategy for Evolutionary Poly-

nomial Regression
t
 detention time in sedimentation column [min]
TSS
 initial concentration of total suspended

solids [mg/l]
PDD
 previous dry days
v0
 settling velocity of particles larger than d0 [m/s]
vi
 settlingvelocityofparticles smaller thand0 [m/s]
Xi
 (i¼ 1,…, k) column vector of the ith candi-

date input
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Ŷ
 vector of model predictions
ΘH
 detention time assumed for design purposes

[min]
WWTP
 waste water treatment plant
INTRODUCTION

The wide variety of pollutants contained in urban waste-

water represents one of the most critical reasons for the

long-term persistence of poor quality waters. Among these

contaminants, inorganic substances, such as heavy metals

(Pettersson ; Vaze & Chiew ; Characklis et al.

; Vallet et al. ), are difficult to treat without resorting

to costly chemical-physical procedures. Their quantity

depends on different factors, such as land use, population

density, traffic intensity (Butler & Davies ). Such sub-

stances are present under particulate form because they

are attached to the solid particles (TSS) in wastewater.

Therefore, the removal of TSS is an essential procedure in

order to reduce pollutant contents of receiving water

bodies (Peavy et al. ).

In a previous study (Piro et al. ) the variability of

dissolved chemical demand fraction for events observed

in the Liguori Channel (Italy) provided considerable impli-

cations with regards to treatment design. In particular, the

results showed that the selection of a treatment strategy

involving a physical unit operation is required in order to

remove particulates through sedimentation and clarifica-

tion. The efficiency of these units depends, to a great

extent, on the flow behavior through them (Maus & Uhl

) and on the settling characteristics of the suspended

solids in the wastewater to be treated. In particular, it is

necessary to determine the settling velocity of solid par-

ticles (Chebbo et al. ) in order to decide the

detention time corresponding to the desired level of solid

removal.

Among the TSS characteristics, particle terminal settling

velocities are the key factors for design and are determined

experimentally using a variety of procedures and devices,

which can be classified as: (a) quiescent settling devices

(for example, various types of settling columns) with liquid

at rest; and (b) dynamic settling devices, in which liquid
can flow or be subject to mechanically generated turbulence

(Marsalek et al. ).

Actually, sedimentation is the natural method of remov-

ing suspended particles from wastewater since all solids

requiring removal are heavier than water. Therefore, using

gravity as the natural dividing force is the cheapest and

most common separation (sedimentation) technique

(Peavy et al. ).

To determine the sedimentation characteristics of a sus-

pension and measure the settling velocities of discrete

particles in diluted suspensions, an indirect method was

devised by Camp (), who first introduced the concept of

the settling column test procedure, some detailed descrip-

tions of which can be found in common environmental

engineering handbooks (for example, Metcalf & Eddy ).

Nevertheless, few studies have dealt with settling

column tests (Weber ; Zanoni & Blomquist ;

Berthouex & Stevens ; Eckenfelder ; Oke et al.

) or with the relationship between experimental results

and design criteria of sedimentation tanks.

Piro et al. (a) described the iso-removal curves

(which represent the water depth where a given percentage

removal of suspended solids is achieved after a given deten-

tion time) in a settling column for combined sewer overflows

(CSOs) in both wet-weather and dry-weather conditions.

The resulting model expression is a power function depend-

ing on two parameters that entail settling velocity of discrete

particles (a) and flocculation factor (b). They suggested using

the column tests to determine these parameters as features

of the diluted suspension.

The aim of this paper is to investigate the possible depen-

dence between some aggregate information on the sampled

event and the two parameters (a) and (b). Such information

pertains to some aggregate hydrological and pollution data

which are supposed to affect re-suspension of solids during

the runoff and settling in sedimentation columns.

From a practical standpoint, the possible dependence of

settling characteristics from such aggregate information

might provide useful advice for design purposes (e.g. resi-

dence time and thus volume of sedimentation tanks) based

on some typical values of the analyzed area. On the other

hand, for existing treatment plants, it might support

decisions about possible enhancement works such as con-

struction of some additional sedimentation tanks, or more
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efficient management practices (e.g. opening/closure of

additional sedimentation units to tune the detention time)

based on a few and easily measurable variables. The investi-

gation reported here is also aimed at supporting future

research on modeling sedimentation features based on

easily retrievable effluent information.

The intended analysis includes the description of sedi-

mentation features as result of very complex mechanisms

involving washing of pollutants from surface, re-suspension

of sediments, transport and sedimentation by using simple

aggregate information. Such relationships can be hardly

deduced by using classical physical modeling since they

imply a number of concurrent phenomena under different

possible boundary conditions. In addition, not all available

information might be useful in describing the target but

rather just a subset of them, thus implying a combinatorial

nature of the analysis. As a consequence, this work leverages

a data-mining approach to achieve additional knowledge

about the relationship between available aggregate infor-

mation and sedimentation features assumed as input/

output data from the system in hand.

Currently, a number of data-driven techniques are avail-

able for developing models from data; from among them the

Evolutionary Polynomial Regression (EPR) (Giustolisi &
Figure 1 | Monitored catchment of Liguori Channel (LC).
Savic ) has been proved effective to identify patterns

in various applications entailing the exploration of a combi-

natorial space of possible alternatives (Berardi et al. ;

Markus et al. ; Rezania et al. ). The analysis per-

formed here exploits two recent variants of the EPR,

namely the Multi-Objective EPR (EPR-MOGA) (Giustolisi &

Savic ) and the Multi-Case Strategy for EPR (MCS-EPR)

(Berardi & Kapelan ; Giustolisi et al. ). Further-

more, this paper presents an original way to use the Multi-

Objective EPR modeling paradigm for analyzing possible

dependence between candidate explanatory variables and

the target attribute. Accordingly, a methodology to use the

EPR for data-mining purposes rather than developing com-

plete model expressions is provided.

Background on data

Data used for the analyses have been sampled from the

catchment of the Liguori Channel (LC) which is located in

the town of Cosenza (southern Italy). The catchment has

an area of 414 Ha, 48% of which is densely urbanized,

while the remaining part is largely covered with natural veg-

etation. The relevant urban area has a population of 50,000

inhabitants. Figure 1 shows a plan view of the catchment.



Figure 2 | Example of iso-removal curves from settling analysis.
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The catchment is drained by a combined sewer system

that conveys the dry-weather flows to the waste water treat-

ment plant (WWTP) at Montalto Uffugo, a small town near

Cosenza.

During heavy rainfall events, the sewer flow exceeds the

capacity of the sewer system and WWTP; the excess flow is

discharged directly into the Crati River (see Figure 1)

through overflow drop structures, without any treatment.

The sampling campaign which this research work refers

to was carried out between autumn 2007 and autumn 2009.

In particular, the analysis refers to nine wastewater samples

that were collected during as many events in wet-weather

conditions, and for each one a settling column test was

performed.

Each sample was collected at the outlet of the over-

flow drop structures during the rainfall event (although

at different times for different events) and consisted of

400 L. The column tests were performed only after

mixing the whole volume, thus, for each sample the

event mean concentration (EMC) was measured while

detailed information about possible concentration varia-

bility during the same event (e.g. the first flush

phenomenon) was not recorded.

Since a minimum diameter of 12.7 cm is recommended

to minimize wall effects (Eckenfelder ), the column used

in this work was a stationary settling column of 150 mm in

diameter and 3 m in height. Such height value was assumed

to reflect typical depth adopted for sedimentation tanks in

the analyzed area (Piro et al. b).

Each settling test consisted of determining the residual

concentration of suspended solids in the wastewater

sampled every 5 min at five orifices equally spaced along

the column. These concentrations are then used to compute

percentage of mass fraction removed at each depth and for

each detention time. The percentage removal values

obtained from the test data are plotted at the appropriate

depths and times, and the iso-lines of percentage removal

(i.e. the iso-removal curves) (Zanoni & Blomquist ) are

constructed by interpolating plotted values (see Figure 2).

Thus, such curves represent the limiting or maximum

settling path for the indicated percentage (Eckenfelder

).

Piro et al. (a) recently found that the pattern of iso-

removal curves can be described by using a power law,
represented in the following equation:

h ¼ atb (1)

where h is the depth, t the residence time, a the particle

settling velocity and b represents the flocculation factor.

Those analyses demonstrated that the simple Equation (1)

results in an exceptionally accurate description of iso-

removal curves on both experimental and literature data.

In particular, those experiments were carried on samples

coming from the LC, the same catchment considered here

during both wet-weather and dry-weather conditions.

Although the mathematical definition of the iso-removal

curves allows easy and accurate calculation of the removal

efficiency of a sedimentation unit, a relatively large variability

of settling velocity a and flocculation factor b was observed

among different sampled events. Table 1 reports the values

of both parameters a and b estimated for the iso-removal

curves corresponding to 10% up to 50% removal of suspended

solids for nine wet-weather events. Data missing at 10 and

50% removal reflect the lack of relevant experimental data as

a consequence of the space-time grid used to estimate the exper-

imental point of the removal efficiency (depth step 0.5 m;

sampling every 5 min). In the case of 10% removal, this was

due to the faster early sedimentation which resulted in

erroneous measurements performed at the top of the column;

in the case of 50% removal the omission was the result of the

short duration of the test (40 min) thus preventing the

estimations of points referring to the lower side of the column.

Therefore, the aim here is to provide an analysis of poss-

ible dependence between such parameters and some



Table 1 | Settling velocity (a) and flocculation factor (b) parameters of iso-removal curves

Removal rate

10% 20% 30% 40% 50%

Event a b a b a b a b a b

1 0.0395 1.4965 0.0040 1.9742 0.0021 1.9223 2.2 × 10�11 6.6917 – –

2 – – 0.0053 2.1410 0.0006 2.5419 4.2 × 10�05 3.1203 1.2 × 10�07 4.5408

3 0.0700 1.2731 0.0008 2.6361 1.5 × 10�5 3.5775 4.5 × 10�07 4.2904 0.0054 2.8841

4 0.1290 1.0000 0.0350 1.2273 0.0054 1.6423 0.0005 2.2123 – –

5 0.0106 2.7938 0.0307 1.4787 0.0168 1.4534 0.0022 1.8681 – –

6 0.0001 3.4840 1.9 × 10�7 5.3090 1.1 × 10�09 6.5461 4.3 × 10�12 7.8619 1.2 × 10�14 9.1882

7 – – 0.0795 1.1427 0.0004 2.6517 0.0005 2.2804 3.2 × 10�06 3.5537

8 0.1694 1.1031 0.0542 1.2656 0.0239 1.344 0.0221 1.2490 – –

9 – – 0.0005 3.0623 0.0002 3.1302 0.0011 2.1359 – –

Table 2 | Values of event-specific aggregate variables

Event
Date
day/month/year

TSS
[mg/l]

iavg
[mm/h]

imax

[mm/h]
hp
[mm] PDD

1 02/04/2008 49.5 1.13 3.0 3.4 5

2 13/01/2009 138.5 2.13 7.4 36.2 2

3 18/02/2009 86.0 1.73 3.2 13.8 1

4 11/03/2009 82.0 1.56 3.2 17.2 4

5 20/03/2009 237.0 2.58 6.2 20.6 4

6 21/04/2009 32.0 1.67 3.6 5.0 1

7 28/04/2009 102.5 2.45 9.4 36.8 1

8 22/09/2009 65.0 0.30 0.4 0.6 1

9 23/10/2009 131.0 0.49 1.0 3.4 1
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common and easily measurable hydrological and pollutant

variables which characterize the different rainfall–runoff

events and relevant effluent.

In fact, it is well known that both settling velocity and

flocculation are mainly affected by particle size. However,

the comparison between the grain size found in wastewater

samples in dry-weather and wet-weather conditions in the

LC catchment confirms the general observation that the

range of variation of particle size in combined sewer systems

is likely to increase during rainfall events (Piro et al. ).

This is due to the combination of two concurrent phenom-

ena: (1) sediment transport from the catchment into the

sewer system; and (2) sediment scratching from pipes (and

re-suspension) due to the increased flow rate during runoff.

From such observation it can be hypothesized that the

heavier the rainfall, the sharper the runoff peak flow and

the re-suspension of solids is expected to be. In addition,

the longer the number of previous dry days, the larger is the

mass of pollutant expected to be flushed off from catchment

surface and from culverts. All these considerationsmotivated

the analysis of those nine samples collected during wet-

weather conditions for which only the following aggregate

variables were available whose meanings are reported in

the notation section: TSS, previous dry days (PDD), hp,

imax, iavg. Table 2 reports relevant values for the nine events.

From Table 2, it is evident that samples pertain to a wide

range of rainfall events. In particular, events numbered 2, 5

and 7 are the most severe in terms of maximum and average
intensity as well as rainfall depth. As reported above, for

some of them (events 2 and 5), the number of PDD seems

to lead to the highest TSS values. Nonetheless, the opposite

cannot be said; in fact, for events 7 and 9 large values of TSS

have been registered after only 1 PDD; thus, it is impossible

to determine any trivial univocal trend from these data.

It is also worth noting that events have been recorded

in different seasons and not in consecutive days; thus,

events are independent from each other as well as the

aggregate variables to be used for next analysis. The only

exception holds for average and maximum rainfall intensity

(iavg and imax) that show a similar behavior in eight out of

nine events (the only exception is event number 8 where

rain intensity was almost uniform). Nonetheless, imax and
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iavg are far from being proportional over all samples and

might be hypothesized to independently affect the size of

particles re-suspended during the runoff, thus the aggregate

data used includes both imax and iavg.
The Evolutionary Polynomial Regression (EPR)

framework

Starting from the eighties, the advent of information tech-

nology as well as the pervasive use of personal computers

has made available a number of data in many different scien-

tific areas. A key issue is to effectively extract information

from stored data. Nowadays, a number of methodologies

and tools are available that resort too many different

approaches ranging from classical statistical inference to

artificial intelligence techniques. All of them are usually

referred to as ‘data-mining’ techniques since they are

aimed at extracting information from data (Fayyad et al.

). Nonetheless, in many practical applications such as

civil engineering, the physical interpretation of some

phenomena is almost completely known even as mathemat-

ical models, while the lack of knowledge about systems/

phenomena is put into numerical parameters. In such cases

information from data might provide additional elements of

knowledge and/or support future data collection strategies.

Among data-mining techniques, data-driven modeling

entails the development of mathematical models based on

data. The main driving criterion for developing such

models is the accuracy in reproducing recorded data,

while just a few data-driven modeling techniques aims at

providing mathematical expression which can also be inter-

preted from a physical point of view. Actually, the

interpretation of mathematical expressions is one of the

main validation criteria to be accounted for when selecting

from among different models describing the same phenom-

enon (Domingos ; Ljung ). Such an observation

motivated the development of some techniques based on

the so called Genetic Programming (GP) (Koza ). It con-

sists of developing symbolic expressions by using

evolutionary algorithms to search among a population of

possible combinations of mathematical operators, candidate

arguments (variables) and parameters. Moving from the

classical GP paradigm, in recent years the EPR has been
adopted in a few applications (Giustolisi et al. ; Berardi

et al. ; Markus et al. ; Rezania et al. ).

In brief, the expressions achievable by EPR are basically

made of a number of additive terms multiplied by as many

coefficients (i.e. as with polynomials), as reported in the

following general expression:

Ŷ ¼ a0 þ
Xm
j¼1

aj � (X1)
ES(j,1) � . . . � (Xk)

ES(j,k)

× f((X1)
ES(j,kþ1) � . . . � (Xk)

ES(j,2k)) (2)

where m is the maximum number of additive terms, X i and

Ŷ are model input and output variables, function f is chosen

by the user, and exponents of variables [i.e. ES( j,i), see pre-

viously referenced works for details (e.g. Giustolisi & Savic

)] are selected from a set EX of candidates defined by

the user. The additive terms that constitute the mathematical

structure of models are obtained by means of a genetic algor-

ithm which selects exponents from EX, while parameters

are estimated using classical numerical regression (e.g.

least squares). Thus, the search for non-linear models is

based on an integer coding of possible alternatives, while

final expressions are linear with respect to coefficient aj. It

is worth noting that, if the set of exponents contains zero

and ES( j,i)¼ 0, the relevant input disappears from the

final expression; thus, although simple, structures like

Equation (2) are quite versatile and flexible enough to repro-

duce patterns in data.

A recent upgrade of the EPR encompasses a multi-

objective optimization strategy (i.e. EPR-MOGA) where

accuracy of data reproduction and parsimony of model

structures are simultaneously maximized. Accuracy is evalu-

ated in terms of coefficient of determination (CoD):

CoD ¼ 1�
P

Nðŷ� yexpÞ2P
Nðyexp � avgðyexpÞÞ2

ð3Þ

where N is the number of samples, ŷ is the value predicted

by the model, and avg(yexp) is the average value of the corre-

sponding observations (evaluated on the N samples).

Parsimony refers to the number of variables and/or

additive terms involved in the mathematical expressions

and its minimization is assumed to result into more general
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description of the phenomenon while allowing its physical

readability.

The EPR-MOGA paradigm is based on a global search

within the space of model expressions, such space is defined

by the user in terms of base structure of mathematical

expressions (e.g. as in Equation (2), function f and maximum

number of additive terms m), the cardinality of set EX of

candidate exponents and number of candidate explanatory

variables. The number of generations set for the multi-objec-

tive genetic algorithm used (i.e. OPTIMOGA, see Laucelli &

Giustolisi () for details) is proportional to all these fac-

tors in order allow for a sufficient exploration of the space.

However, the actual number of function evaluations is not

necessarily proportional to the number of generations due

to the efficient management of a dynamic archive of optimal

individuals performed by OPTIMOGA.

The advantages of the EPR-MOGA are that: (1) it allows

developing a Pareto set of models with different accuracy

and parsimony in a unique modeling run; (2) the possible

similarities between returned expressions allow for discuss-

ing and interpreting the description of the phenomenon;

and (3) the set of models is aimed at supporting the user

to select the expression suited for the peculiar intended

analysis.

The most recent version of EPR entails the MCS-EPR. It

adopts the same evolutionary strategy of EPR-MOGA for

developing mathematical expressions, while the assessment

of model parameters (i.e. aj,s with s¼ 1,…,C) and the evalu-

ation of accuracy refer to C separate cases/experiments

simultaneously. Actually, such cases/experiments reflect

user-defined partitioning of the available data based on the

hypothesis that all of them refer to the same phenomenon.

Thus, resulting model expressions (i.e. sets of exponents)

actually hold for every individual case, although different

parameters take charge of different error realization in

each subset of data.

The following measure of fitness to data is used in

MCS-EPR instead of Equation (3):

CoDMCS ¼ 1�
PC

s¼1

P
Ns
ðŷs � yexpÞ2P

Nðyexp � avgðyexpÞÞ2
ð4Þ

where Ns is the number of samples in the s-th case/exper-

iment (i.e. N¼ ΣNs), C is the number of cases, ŷs is the
model prediction using coefficients aj,s and yexp is the corre-

sponding observation.

Such formulation is particularly valuable when very

few data are available for each case/experiment or data

partitioning is unbalanced among different cases. This is

also consistent with the observation that larger data

subsets (i.e. large Ns) allow being more confident on

the final model (Ljung ). Similarly to the CoD in

EPR-MOGA, the closer CoDMCS is to 1 the more suitable

the model structure is in describing the overall observed

data.

It is worth noting that the same measure of parsimony as

EPR-MOGA is adopted in MCS-EPR (i.e. number of vari-

ables and/or additive terms involved in the mathematical

expressions).

Figure 3 provides a comparison of EPR-MOGA and

MCS-EPR algorithms; grey boxes emphasize the key

differences.

Mining data by EPR-MOGA and MCS-EPR

Although both EPR-MOGA and its MCS variant have been

proved to be useful for developing models in different appli-

cations, this paper proposes exploiting their paradigm to

analyze the relative influence of each variable in describing

the output, without necessarily achieving a final model

expression. The practical implication of this approach is

twofold: on one hand it investigates which are the most

meaningful variables (if any) from among those available;

on the other hand it might support next more effective

data collection to model the phenomenon in hand.

To this end, suppose that a hypothetical model has to be

developed made of one (polynomial) term only (i.e. m¼ 1),

Ŷ ¼ a0 þ a1 � (X1)
ES(1,1) � . . . � (Xk)

ES(1,k) (5)

Then, EPR-MOGA is run so that accuracy to target

output is maximized while minimizing the number of

input variables (i.e. Xi) involved in the final mathematical

expression. The resulting Pareto set of models is expected

to show a progressively increasing number of input variables

and accuracy to training data. It is worth noting that such

analysis does not require any prior assumption about the

candidate exponents of variables but just some values



Figure 3 | EPR-MOGA (left) and MCS-EPR (right) flow charts.
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entailing direct/inverse and linear/non-linear relationships.

This way, resulting models allow arguing the relative impor-

tance of each explanatory variable in reproducing the target

attribute (model output) and the type of possible

relationship.

From a data-mining standpoint, the variable(s) selected

first (i.e. in the most parsimonious expression) and, in par-

ticular, that (those) leading to a significant improvement of

accuracy is (are) likely to be the most meaningful to explain

the target variable among all candidates. The persistence of

one or more variables in the same direct/inverse fashion

among different models is a further point to assert its

(their) influence. On the contrary, those variables selected

in the most accurate (and less parsimonious) models

only and/or showing both direct and inverse dependence

from output, or even appearing in few models, only can

be assumed to be not that informative about the

phenomenon.

Confidence about such conclusions descends also from

the observation that different models are obtained indepen-

dently from each other during the global exploration of the

search space.
A similar analysis can be repeated by using the MCS-

EPR. In fact, it permits discovering direct/inverse relation-

ships of quite general validity without incurring possible

misleading conclusions due to the particular error realiz-

ation of the single experiments. Indeed, the use of

MCS-EPR for data-mining purposes allows the confirming/

discussing of previous findings coming from separate EPR-

MOGA analyses on individual cases/experiments. When

non-unique relationships are obtained from both single

EPR-MOGA and MCS-EPR analyses, then variables con-

sidered are likely to be non-correlated and, eventually, this

indicates that a different set of candidate explanatory vari-

ables should be considered. Moreover, the model accuracy

achieved on different cases also allows confirmation of

such conclusions.
ANALYSES AND RESULTS

Two analyses are carried out considering parameters a and

b separately. The aggregate data reported above (i.e. TSS,

PDD, hp, imax, iavg) are assumed to be potential explanatory
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variables for describing the variation of a and b among the

nine samples (events). In order to do this, five different

runs of the EPR-MOGA have been performed for a and b,

respectively, each pertaining an iso-removal curve (i.e. 10,

20, 30, 40 and 50%). Thus, for each iso-removal curve

two hypothetical models are developed which describe

a¼ a(TSS, PDD, hp, imax, iavg) and b¼ b(TSS, PDD, hp,

imax, iavg). Each run is performed considering Equation (5)

(i.e., m¼ 1 in Equation (3), no function f ), and a set of can-

didate exponents ES¼ [�3, �2.5, �2, �1.5, �1, �0.5, 0, 0.5,

1.5, 2, 2.5, 3]. Although they do not descend from any prior

physical consideration, the exponents in EX here are repre-

sentative of direct/inverse relationships only while allowing

an acceptable degree of accuracy in the final expression. The

estimation of the offset parameter a0 is also allowed at this

stage as it is assumed that other variables might be con-

sidered for achieving a more accurate description of a and b.

Afterwards, two MCS-EPR runs are performed consider-

ing the values of parameters a and b of 10, 20, 30, 40 and

50% iso-removal curves as different cases/experiments gov-

erned by the same underlying relationships with candidate

explanatory variables. The scope of this analysis is twofold.

On one hand, it allows to confirm/controvert findings from

previous EPR-MOGA analyses on individual cases. On the

other hand, it aims at discovering the most informative

aggregate variables to explain settling velocity and floccula-

tion factor over all removal stages during sedimentation (as

represented by the five iso-removal rate curves). The same

search settings of the individual EPR-MOGA runs have

been applied for MCS-EPR analyses.

Models obtained from both EPR-MOGA and MCS-EPR

are discussed in the following by neglecting numerical coef-

ficients (i.e. a0 and a1) since the scope of this analysis is not

to provide a final model expression but rather to mine infor-

mation from data.

Flocculation factor (b)

The expressions returned for the flocculation factor b of the

five iso-removal curves are represented in Figure 4. Each

diagram reports a number of possible expressions each con-

taining an increasing number of variables and showing

increasing accuracy. All diagrams reports on the lower-

right corner a point representing the average value of
parameters b of the iso-removal curves over all samples: it

is the less accurate but, of course, the most parsimonious

model structure (none inputs selected). It is evident that

including one or more input variables results into more

accurate reproduction of b.

The most informative explanatory variable is TSS for

almost all iso-removal curves. It is reported in all models

but the second model of the 10% case, where imax and hp

are selected.

From the analysis of the Pareto fronts of expressions, it

is also evident that TSS allows for a significant improvement

of accuracy (i.e. reproduction of the target b) in all iso-

removal cases. On the contrary, the inclusion of additional

variables beyond TSS results into a marginal accuracy

improvement. From a data-driven perspective this means

that the additional variables do not actually improve the

main description of the target (i.e. model output) but are

selected to slightly improve the fit to data. This general

advice is somehow confirmed by the alternation of direct

and inverse dependence on the remaining variables over

the different iso-removal cases.

The MCS-EPR analyses returned the following model

expressions (beyond the trivial constant value) which con-

firm the previous EPR-MOGA finding about the influence

of TSS.

b ¼ a0 þ a1
TSS3

b ¼ a0 þ a1
i0:5max

TSS2

b ¼ a0 þ a1
i3max

TSS2 � hp1:5

b ¼ a0 þ a1
i1:5avg � i1:5max

TSS1:5 � hp1:5

(6)

It is worth noting that the flocculation factor b is found

to be inversely dependent on the concentration of TSS.

Clear explanations of this can be found in literature about

the wet-weather flow characteristic (Lin et al. ). In

fact, the particulate matter transported in rainfall-runoff pro-

cesses at the urban surface is largely inorganic, with a

specific gravity in the range of 2.3 to 2.7 g/cm3, and a vola-

tile fraction generally less than 30% (Sansalone et al. ;



Figure 4 | Pareto’s fronts of models for flocculation factor (b).
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Ying & Sansalone ). These conditions generate a very

hetero-disperse and inorganic gradation of particulate

matter for source area discharges, which is in turn less

prone to flocculation. The increase in TSS from one event

to another is, therefore, mainly due to the contribution of

particles that come from the surfaces scouring, which

decreases the propensity to flocculation of the water

solution.

The MCS-EPR analysis emphasizes that the number

of PDD¼ does not provide any information if all

removal rates (i.e. the whole settling process) are analyzed

together.

As final remark, the same analyses have been repeated

by forcing a0¼ 0 and results mainly confirm the same
conclusions about the inverse dependence between TSS

and b, although with different exponents and less accurate

models. For the sake of brevity such further results

are not reported herein, but they somehow confirm

that additional information, beyond those provided by

the available data, might improve the description of the

target.

Settling velocity (a)

About the settling velocity parameter, the analysis of

returned expressions does not allow a unique conclusion

for all iso-removal curves to be drawn (see Figure 5). On

one hand, the 10, 40 and 50% iso-removal cases shows the



Figure 5 | Pareto’s fronts of models for settling velocity (a).
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inverse dependence on maximum rainfall intensity imax as

the most important explanatory variables. This would lead

us to hypothesize that during severe rainfall events the

flow through the channel scratches out large size sediments,

which in turn settles down quickly. The relation between a

and hp is quite ambiguous even among different models of

the same iso-removal case. However, somehow hp also

seems to be informative about the variation of a since it is

selected as first in three out of five cases.

On the other hand, the 20% iso-removal case describes

the opposite situation, and the number of PDD seems to

be also important. Also in this case, it could be argued
that the higher the number of dry days, the more heavy sedi-

ments (i.e. with higher settling velocity) are likely to be

settled along the pipes. Nonetheless, the analysis of the

accuracy of returned models shows very inaccurate repro-

duction of parameter a for 20% iso-removal case. From a

data-mining perspective this suggests that the available infor-

mation (i.e. aggregate parameters) is not sufficient to

describe the variation of settling velocity. Moreover, it

should be remarked that, from present analysis the initial

concentration of TSS is clearly one of the less informative

aggregate variable for explaining the variation of settling

velocity.
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The MCS-EPR models obtained by considering the five

iso-removal cases for parameter a are different from pre-

vious EPR-MOGA models, as reported in Equation (5). In

addition, the dependence from hp is not univocal and they

are quite inaccurate on relevant subsets of data (i.e. on

each iso-removal case). Vice-versa, imax was found to be

inversely proportional to a, although it is not the most sig-

nificant variable.

a ¼ a0 þ a1
hp3

a ¼ a0 þ a1
hp1:5

i2:5max

a ¼ a0 þ a1
hp2

i3avg � imax

a ¼ a0 þ a1
PDD0:5 � hp
TSS0:5 � i2max

(7)

From a physical perspective, this behavior might suggest

that the rainfall intensity (both average and maximum), the

rainfall depth and the number of PDD do not entail a unique

explanation for particle size distribution. In fact, the par-

ameter a is the settling velocity of the particles with a

specific size at time zero; thus, to correctly estimate its

value, knowledge of the specific physical and geometric

characteristics of the particles is required (Metcalf & Eddy

). Actually such characteristics are better described by

particle size distribution and the particles weight rather

than by aggregate parameters like the TSS. In fact, for

example, in sedimentation Type I (every particle settles inde-

pendently) the particle size distribution is required to

compute the settling velocity distribution by using Stoke’s

law; consequently the total mass fraction removed by sedi-

mentation is computed as:

M ¼ 1� x0 þ
Z x0

0

vi
v0

dx (8)

where (1� x0) is the fraction of particles with settling vel-

ocity greater than v0 (corresponding to size larger than d0),

and the integral is the fraction of particles removed accord-

ing to the ratio vi/v0, with vi settling velocity corresponding

to the particles smaller than d0.
From a modeling perspective, this analysis confirms that

further investigation are needed to achieve meaningful

relations between parameter a and particle size distribution

to better describe the variation of the iso-removal curves by

event.

As a side achievement, this result shows that the com-

bined use of EPR-MOGA and MCS-EPR allows for robust

data-mining that helps to avoid misleading conclusions.

Also in this case, the analysis performed by imposing a0¼ 0

neither improved the description of the target a nor pro-

vided any additional insight.
Practical implications

It was observed that the CSOs involve flocculating par-

ticles and that the Stoke’s equation cannot be used to

design clarifiers as flocculating particles are continually

changing in size and shape. Thus, the criteria adopted

to design clarifiers have evolved in both practice

and theory in order to account for many factors

which contribute to the flocculation process. Usually

the settling column test (Peavy et al. ) is used to

estimate the removal efficiency of TSS and the detention

time of the flocculating solution, but this approach is

often time consuming and expensive for practical design

purposes.

The iso-removal lines allow determining the fractions of

particles that are completely removed from the column, i.e.,

the particles with diameters d� d0, for a given detention

time t¼ΘH. Nevertheless, the total removal efficiency will

be greater because also finer particles (with dimensions

d< d0 and settling velocity v< v0) are partially removed.

The results of the column test can be used to assess the

total removal efficiency (Etot) of sedimentation process

(Metcalf & Eddy ), as:

Etot ¼ E(ΘH)þ
X
i

(Ei � Eiþ1) � hi,iþ1

H
(9)

where H is the column depth, E(ΘH) is the constant percent

removal curve passing through point (ΘH, H ), Ei and Eiþ1

are the iso-removal efficiency greater than E(ΘH) and hi,iþ1

is the depth of the middle point of the segment joining Ei
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and Eiþ1 curves at t¼ΘH. Figure 6 shows how single contri-

butions are obtained for iso-removal curves.

It is evident that this approach is time consuming and

expensive for practical design purposes, especially taking

into account the high variability of the settling process in

single events. The knowledge of the analytical relationships

for each iso-removal curve (i.e. hi¼ ait
bi), allows us to write

Equation (9) as:

Etot ¼ E(ΘH)þ
X
i

(Ei � Eiþ1) � hi þ hiþ1

2H
¼

¼ E(ΘH)þ 1
2H

X
i

(Ei � Eiþ1) � (aiΘbi
H þ aiþ1Θ

biþ1
H ) (10)

where the parameters ai and bi are assumed to take charge

of the variability of the settling behavior due to effluent

characteristics.

The data-mining methodology used herein allows inves-

tigating the possible influence of some aggregate

hydrological and pollution indicators on the variability of

ai and bi. In addition, it might support the development of

some concise mathematical relationships of ai and bi for

each iso-removal curve which can be easily included in

Equation (10).
Figure 6 | Schematics methodology to compute the total removal efficiency for the fixed

detention time ΘH.
The results showed the presence of relationship between

the sedimentation characteristics of the CSOs and the more

general hydrological and pollutant aggregate information,

such as rainfall intensity and the concentration of TSS.

However, future experimental studies on different catch-

ments are expected to improve the mathematical

relationships between the used parameters in order to

adapt the methodology to different local contexts.

From design perspective, Equation (10) can easily be

used to assess the total removal efficiency as a function of

the detention time (i.e. flow rate) and incoming pollutant

aggregate information (i.e. TSS concentration), once the par-

ameters of the iso-removal curves are estimated from the

peculiar characteristics of the drained catchment. The

assessment of the detention time required to achieve a suffi-

cient particle removal, allows determining the volume of

clarifiers and, in turn, permits choosing the best treatment

type.

From a treatment plant management perspective, the

TSS removal efficiency can be enhanced by using coagulant

additives, such as polymers or aluminum salts (Li et al.

). As a consequence, the possible assessment of

expected total removal efficiency based on the conditions

of detention time and concentration of pollutants (TSS) is

a crucial point for developing automatic systems for setting

(e.g. in real time) the concentration of clotting agents based

on the peculiar event. Similarly, this approach can be used

to assess the air to blow for air bubble generation in the

clarifier or to adjust the rotation speed of the stirring in

the mixing reactor. Such systems would ultimately allow sav-

ings of energy and coagulant additives.
CONCLUSIONS

The treatment and management of the CSOs need

the knowledge of sedimentation characteristics; when

retained for clarification, larger sediment and settleable

particles are mainly influenced by gravitational forces,

while the suspended particles are subject to coagulation

phenomena. A relationship between sedimentation charac-

teristics and easily measurable parameters represents a

powerful tool in design and management of treatment

processes.
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The present work proposes an investigation into the

relationships between some hydrological and pollution

aggregate variables, gravitational forces and flocculation

indicators based on a recent modeling approach for the sedi-

mentation analysis developed by some of the authors.

The data-driven modeling paradigm of EPR is proposed

as an original way to perform the analysis of available infor-

mation. Such data-mining approach takes advantage from

the multi-objective strategy underlying both EPR-MOGA

and MCS-EPR. It allows information retrieval about the

influence of candidate explanatory variables on the target

(i.e. model output) by analyzing a Pareto set of simple

(monomial) expressions. While doing so, two aspects need

to be taken into account in order to improve the generaliz-

ation of results (Ljung ): the data available and the

introduction of field expert knowledge. Data should refer

to typical system conditions in order to be representative

of actual system behavior and increasing the number of

samples may improve the general validity of conclusions.

On the other hand, the data-mining methodology should

allow the analyst to clearly read results in order to facilitate

elicitation of expert knowledge. In this study, the few data

available are representative of typical system behavior

since they neither pertain to any extreme event nor a singu-

lar catchment condition. About the flocculation factor b, the

expressions found have been explained from a technical

standpoint. Upcoming data to be collected on the same

catchment are expected to confirm these conclusions.

In contrast, in the case of settling velocity a, the lack of

consistent and understandable relationships between

variables basically prevents us from drawing similar

conclusions, and the harvesting of additional data (even

involving different type of information) is recommended

for future studies.

The results of the analysis are mostly consistent with

previous studies on urban CSOs where a strong relationship

between the TSS removal efficiency and the TSS initial con-

centration was observed (Rossini et al. ; Li et al. ).

Nonetheless, in common wet-weather sewage and CSO,

higher initial TSS concentration results in an increase in par-

ticle size and particle density and, in turn, in an increase of

removal efficiency (Lenhart ). On the contrary, the ana-

lyses reported here, as well as previous studies on the LC

catchment, emphasize that an inverse relationship holds.
This is explained by considering that the matter flushed

from the catchment surface during rainfall events is mostly

inorganic and consequently the particle coagulation

decreases.

Regarding the settling velocity a, it is known to depend

on particle size and gravity distribution which were not

available among the analyzed data. A follow-up study is cur-

rently investigating the particles size and gravimetric

changes to better define the variability of the gravitational

forces indicator among different events.

Despite the complexities and challenges normally associ-

ated with the measure and evaluation of the physical and

chemical sedimentation characteristics in CSOs this study

highlights the concrete possibility of a relationship between

some of these characteristics and easier measureable and

appraisable parameters. The usefulness on such models to

improve design and managements practices of treatment

plants has been also delineated.
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