10 research outputs found

    Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe production of π±^{±}, K±^{±}, and (p)p \left(\overline{\textrm{p}}\right)\textrm{p} is measured in pp collisions at s \sqrt{s} = 13 TeV in different topological regions of the events. Particle transverse momentum (pT_{T}) spectra are measured in the “toward”, “transverse”, and “away” angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, RT_{T} = NT_{T}/〈NT_{T}〉, is used to group events according to their UE activity, where NT_{T} is the measured charged-particle multiplicity per event in the transverse region and 〈NT_{T}〉 is the mean value over all the analysed events. The first measurements of identified particle pT_{T} spectra as a function of RT_{T} in the three topological regions are reported. It is found that the yield of high transverse momentum particles relative to the RT_{T}-integrated measurement decreases with increasing RT_{T} in both the toward and the away regions, indicating that the softer UE dominates particle production as RT_{T} increases and validating that RT_{T} can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing RT_{T}. This hardening follows a mass ordering, being more significant for heavier particles. Finally, it is observed that the pT_{T}-differential particle ratios \left(\textrm{p}+\overline{\textrm{p}}\right)/\left({\uppi}^{+}+{\uppi}^{-}\right) and (K+^{+} + K^{−})/(π+^{+} + π^{−}) in the low UE limit (RT_{T} → 0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce e+^{+}e^{−} results.[graphic not available: see fulltext

    Measurement of the non-prompt D-meson fraction as a function of multiplicity in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe fractions of non-prompt (i.e. originating from beauty-hadron decays) D0^{0} and D+^{+} mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of s \sqrt{s} = 13 TeV with the ALICE detector at the LHC. The results are reported in intervals of transverse momentum (pT_{T}) and integrated in the range 1 < pT_{T}< 24 GeV/c. The fraction of non-prompt D0^{0} and D+^{+} mesons is found to increase slightly as a function of pT_{T} in all the measured multiplicity intervals, while no significant dependence on the charged-particle multiplicity is observed. In order to investigate the production and hadronisation mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour glass condensate including three-pomeron fusion.[graphic not available: see fulltext

    Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNN\pmb {\sqrt{s_{\mathrm{{NN}}}}} = 5.02 TeV

    Get PDF
    International audienceThe azimuthal (Δφ\Delta \varphi ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at sNN=5.02\sqrt{s_{\mathrm{{NN}}}} = 5.02 TeV. Results are reported for electrons with transverse momentum 4<pT<16GeV/c4<p_{\textrm{T}}<16\textrm{GeV}/c and pseudorapidity η<0.6|\eta |<0.6. The associated charged particles are selected with transverse momentum 1<pT<7GeV/c1<p_{\textrm{T}}<7\textrm{GeV}/c, and relative pseudorapidity separation with the leading electron Δη<1|\Delta \eta | < 1. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The Δφ\Delta \varphi distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators

    Symmetry plane correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76TeV

    No full text
    International audienceA newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb–Pb collisions at sNN\sqrt{s_\text {NN}} = 2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions

    J/ψ\psi production at midrapidity in p-Pb collisions at sNN=8.16\sqrt{s_{\rm NN}} = 8.16 TeV

    No full text
    International audienceThe production of inclusive, prompt and non-prompt J/ψ was studied for the first time at midrapidity (−1.37 2 GeV/c. The study of the J/ψ mesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of 689 ± 13 μb1^{−1}. The proton-proton reference cross section for inclusive J/ψ was obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing the pT_{T}-differential J/ψ production cross sections. The pT_{T}-differential nuclear modification factors RpPb_{pPb} of inclusive, prompt, and non-prompt J/ψ are consistent with unity and described by theoretical models implementing only nuclear shadowing.[graphic not available: see fulltext

    Jet-like correlations with respect to KS0^{0}_{\rm S} and Λ\Lambda (Λˉ\bar{\Lambda}) in pp and Pb-Pb collisions at sNN\mathbf{\it\sqrt{s_\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceTwo-particle correlations with KS0\textrm{K}^{0}_\mathrm{{S}}, Λ\Lambda /Λ\overline{\Lambda }, and charged hadrons as trigger particles in the transverse momentum range 8{3 GeV/cc as expected from strong in-medium energy loss, while an enhancement develops at low pT,assocp_{{\textrm{T}},{\textrm{assoc}}} on both the near and away sides, reaching IAA1.8I_{\textrm{AA}}\approx 1.8 and 2.7 respectively. These findings are in good agreement with previous ALICE measurements from two-particle correlations triggered by neutral pions (π0\pi ^{0}–h) and charged hadrons (h–h) in Pb–Pb collisions at sNN = 2.76\sqrt{s_{\textrm{NN}}}~=~2.76 TeV. Moreover, the correlations with KS0\textrm{K}^{0}_\mathrm{{S}} mesons and Λ\Lambda /Λ\overline{\Lambda } baryons as trigger particles are compared to those of inclusive charged hadrons. The results are compared with the predictions of Monte Carlo models

    Production of KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda (Λˉ\bar{\Lambda}), Ξ±\Xi^{\pm} and Ω±\Omega^{\pm} in jets and in the underlying event in pp and p-Pb collisions

    No full text
    International audienceThe production of strange hadrons (KS0 {\textrm{K}}_{\textrm{S}}^0 , Λ, Ξ±^{±}, and Ω±^{±}), baryon-to-meson ratios (Λ/KS0 {\textrm{K}}_{\textrm{S}}^0 , Ξ/KS0 {\textrm{K}}_{\textrm{S}}^0 , and Ω/KS0 {\textrm{K}}_{\textrm{S}}^0 ), and baryon-to-baryon ratios (Ξ/Λ, Ω/Λ, and Ω/Ξ) associated with jets and the underlying event were measured as a function of transverse momentum (pT_{T}) in pp collisions at s \sqrt{s} = 13 TeV and p Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, Ξ±^{±} and Ω±^{±}, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p–Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadron pT_{T} (0.6–6 GeV/c). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with Pythia 8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadron pT_{T} region. The maximum deviation is observed for Ξ±^{±} and Ω±^{±} which reaches a factor of about six. The event multiplicity dependence is further investigated in p−Pb collisions. In contrast to what is observed in the underlying event, there is no significant event-multiplicity dependence for particle production in jets. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.[graphic not available: see fulltext

    Measurement of the angle between jet axes in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThis article reports measurements of the angle between differently defined jet axes in pp collisions at s \sqrt{s} = 5.02 TeV carried out by the ALICE Collaboration. Charged particles at midrapidity are clustered into jets with resolution parameters R = 0.2 and 0.4. The jet axis, before and after Soft Drop grooming, is compared to the jet axis from the Winner-Takes-All (WTA) recombination scheme. The angle between these axes, ∆Raxis_{axis}, probes a wide phase space of the jet formation and evolution, ranging from the initial high-momentum-transfer scattering to the hadronization process. The ∆Raxis_{axis} observable is presented for 20 <pTch jet {p}_{\textrm{T}}^{\textrm{ch}\ \textrm{jet}} < 100 GeV/c, and compared to predictions from the PYTHIA 8 and Herwig 7 event generators. The distributions can also be calculated analytically with a leading hadronization correction related to the non-perturbative component of the Collins-Soper-Sterman (CSS) evolution kernel. Comparisons to analytical predictions at next-to-leading-logarithmic accuracy with leading hadronization correction implemented from experimental extractions of the CSS kernel in Drell-Yan measurements are presented. The analytical predictions describe the measured data within 20% in the perturbative regime, with surprising agreement in the non-perturbative regime as well. These results are compatible with the universality of the CSS kernel in the context of jet substructure.[graphic not available: see fulltext

    Symmetry plane correlations in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions
    corecore