88 research outputs found

    Accounting Problems Under the Excess Profits Tax

    Get PDF
    DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV- 1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8(+) T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.Funding Agencies|Research Council of Norway; Odd Fellow</p

    Induction of thyroiditis in mice with thyrotropin receptor lacking serologically dominant regions

    No full text
    Grave's disease (GD) is characterized by pathogenic autoantibodies to the human thyrotropin receptor (hTSH-R), and is frequently associated with a lymphocytic infiltrate of the thyroid gland. In attempts to establish a murine model of GD, we and others have previously shown that immunization of mice with recombinant preparations of the hTSH-R ectodomain induces high titres of specific antibodies, which, however, are not pathogenic, nor is the response accompanied by the development of thyroiditis. Since earlier reports identified the serological immunodominant determinants within the N- and C-terminal regions of hTSH-R ectodomain, we reasoned that immunization of mice with truncated fragments of ectodomain lacking these dominant regions might result in skewing of the response to other determinants of the molecule, with consequent induction of immunopathological features present in GD. We show here that multiple challenge of BALB/c mice with an amino acid fragment of residues 43–282 generates antibodies directed at hTSH-R peptides 37–56, 157–176, 217–236 and 232–251. This reactivity pattern is distinct from that induced previously with the whole ectodomain of hTSH-R in BALB/c animals. Thyroid function remained unaffected in these mice, suggesting that pathogenic antibodies were not being induced. Interestingly, some animals developed lymphocytic infiltration of the thyroid gland, clearly indicating the presence of pathogenic T cell determinants within the 43–282 fragment. Challenge with the related fragment 43–316 produced the same pattern of serological response to the synthetic peptides as fragment 43–282, but was not accompanied by thyroiditis. The results demonstrate: (i) the presence of thyroiditogenic determinants within hTSH-R, and (ii) that these pathogenic determinants are likely to be cryptic, as their effect is exhibited only when the hierarchy of immunodominance within hTSH-R is drastically altered
    • …
    corecore