209 research outputs found

    Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity

    Get PDF
    In order to investigate the variability of helium degassing in continental regions, its release from rocks and emission into the atmosphere, here we studied the degassing of volatiles in a seismically active region of northern Italy (MwMAX = 6) at the Nirano-Regnano mud volcanic system. The emitted gases in the study area are CH4–dominated and it is the carrier for helium (He) transfer through the crust. Carbon and He isotopes unequivocally indicate that crustal-derived fluids dominate these systems. An high-resolution 3-dimensional reconstruction of the gas reservoirs feeding the observed gas emissions at the surface permits to estimate the amount of He stored in the natural reservoirs. Our study demonstrated that the in-situ production of 4He in the crust and a long-lasting diffusion through the crust are not the main processes that rule the He degassing in the region. Furthermore, we demonstrated that micro-fracturation due to the field of stress that generates the local seismicity increases the release of He from the rocks and can sustain the excess of He in the natural reservoirs respect to the steady-state diffusive degassing. These results prove that (1) the transport of volatiles through the crust can be episodic as function of rock deformation and seismicity and (2) He can be used to highlight changes in the stress field and related earthquakes

    Inferences on physico-chemical conditions and gas-water interaction by new quantitative approaches: The case of Panarea (Italy)

    Get PDF
    We have developed two new quantitative approaches to calculate temperatures in hydrothermal reservoirs by using the CO2-CH4-CO-H2 gaseous system and to model selective dissolution of CO2-H2S-N2-CH4-He-Ne mixtures in fresh and/or air saturated seawater. The anomalous outgassing starting November 2003 from the submarine exhalative system offshore Panarea island (Italy), was the occasion to apply such approaches to the extensive collection of volcanic gases. Gas geothermometry suggest the presence of a deep geothermal system at temperature up to 350°C and about 12 mol% CO2 in the vapor, which feeds the submarine emissions. Based on the fractional dissolution model, the rising geothermal vapor interacts with air-saturated seawater at low depths, dissolving 30-40% CO2 and even more H2S, modifying the pH of the aqueous solution and stripping the dissolved atmospheric volatiles (N2, Ne). Interaction of the liquid phase of the thermal fluids with country rocks, as well extensive mixing with seawater, have been also recognized and quantified. The measured output of hydrothermal fluids from Panarea exhalative field [1] accounts for the involvement of volatiles from an active degassing magma, nonetheless the climax of the investigated phenomenon is probably overcome and the system is new tending towards a steady-state. Our quantitative approaches allow us to monitor the geochemical indicators of the geothermal physico-chemical conditions and their potential evolution towards phreatic events or massive gas releases, which certainly are the main hazards to be expected in the area. The event at Panarea has in fact highlighted how hydrothermal systems can exhibit dramatic and sudden changes of their physico-chemical conditions and rate of fluid release, as a response to variable activity of feeding magmatic systems

    Understanding the origin and mixing of deep fluids in shallow aquifers and possible implications for crustal deformation studies. San Vittorino plain, Central Apennines

    Get PDF
    Expanding knowledge about the origin and mixing of deep fluids and the water–rock–gas interactions in aquifer systems can represent an improvement in the comprehension of crustal deformation processes. An analysis of the deep and meteoric fluid contributions to a regional groundwater circulation model in an active seismic area has been carried out. We performed two hydrogeochemical screenings of 15 springs in the San Vittorino Plain (central Italy). Furthermore, we updated the San Vittorino Plain structural setting with a new geological map and cross-sections, highlighting how and where the aquifers are intersected by faults. The application of Na-Li geothermometers, coupled with trace element and gas analyses, agrees in attributing the highest temperatures (>150◦C), the greatest enrichments in Li (124.3 ppb) and Cs (>5 ppb), and traces of mantle-derived He (1–2%) to springs located in correspondence with high-angle faults (i.e., S5, S11, S13, and S15). This evidence points out the role of faults acting as vehicles for deep fluids into regional carbonate aquifers. These results highlight the criteria for identifying the most suitable sites for monitoring variations in groundwater geochemistry due to the uprising of deep fluids modulated by fault activity to be further correlated with crustal deformation and possibly with seismicity

    Structural Characterization of the Highly Restricted Down Syndrome Critical Region on 21q22.13: New KCNJ6 and DSCR4 Transcript Isoforms

    Get PDF
    Down syndrome (DS) is caused by trisomy of chromosome 21 and it is the most common genetic cause of intellectual disability (ID) in humans. Subjects with DS show a typical phenotype marked by facial dysmorphisms and ID. Partial trisomy 21 (PT21) is a rare genotype characterized by the duplication of a delimited chromosome 21 (Hsa21) portion and it may or may not be associated with DS diagnosis. The highly restricted Down syndrome critical region (HR-DSCR) is a region of Hsa21 present in three copies in all individuals with PT21 and a diagnosis of DS. This region, located on distal 21q22.13, is 34 kbp long and does not include characterized genes. The HR-DSCR is annotated as an intergenic region between KCNJ6-201 transcript encoding for potassium inwardly rectifying channel subfamily J member 6 and DSCR4-201 transcript encoding Down syndrome critical region 4. Two transcripts recently identified by massive RNA-sequencing (RNA-Seq) and automatically annotated on Ensembl database reveal that the HR-DSCR seems to be partially crossed by KCNJ6-202 and DSCR4-202 isoforms. KCNJ6-202 shares the coding sequence with KCNJ6-201 which is involved in many physiological processes, including heart rate in cardiac cells and circuit activity in neuronal cells. DSCR4-202 transcript has the first two exons in common with DSCR4-201, the only experimentally verified gene uniquely present in Hominidae. In this study, we performed in silico and in vitro analyses of the HR-DSCR. Bioinformatic data, obtained using Sequence Read Archive (SRA) and SRA-BLAST software, were confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Sanger sequencing on a panel of human tissues. Our data demonstrate that the HR-DSCR cannot be defined as an intergenic region. Further studies are needed to investigate the functional role of the new transcripts, likely involved in DS phenotypes

    MTHFR C677T polymorphism analysis: A simple, effective restriction enzyme-based method improving previous protocols

    Get PDF
    Background: 5,10-Methylentetrahydrofolate reductase (MTHFR) C677T polymorphism is one of the most studied genetic variations in the human genome. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is one of the most used techniques to characterize the point mutations in genomic sequences because of its suitability and low cost. The most widely used method for the MTHFR C677T polymorphism characterization was developed by Frosst et al. (1995) but appears to have some technical limitations. The aim of this study was to propose a novel PCR-RFLP method for the detection of this polymorphism. Methods: In order to retrieve all published articles possibly describing any PCR-RFLP methods useful to analyze MTHFR C677T polymorphism, we performed systematic queries on PubMed, using a combination of Boolean operators (AND/OR) and MeSH terms. Amplify software was used in order to design a new primer pair following the optimal standard criteria. Primer-BLAST software was used to check primer pair's biological specificity. Results: The analysis of previous literature showed that PCR-RFLP method remains the most used technique. None of the 108 primer pairs described was ideal with regard to main accepted primer pair biochemical technical parameters. The new primer pair amplifies a DNA-fragment of 513 base pair (bp) that, in the presence of the polymorphism, is cut by Hinf I enzyme in two pieces of 146 bp and 367 bp and clearly visible on 2% agarose gel. The level of expertise and the materials required are minimal and the protocol takes one day to carry out. Conclusion: Our original PCR-RFLP strategy, specifically designed to make the analysis optimal with respect to PCR primers and gel analysis, fits the ideal criteria compared to the widely used strategy by Frosst et al (1995) as well as any other PCR-RFLP strategies proposed for MTHFR C677T polymorphism genotyping to date

    Campionatore di profondità per gas disciolti

    Get PDF
    I sistemi di campionamento d’acque per lo studio dei gas disciolti, devono rispondere all’esigenza di mantenere integra la quantità di gas disciolto, in relazione al volume di acqua campionata, e di preservarne la composizione fino all’analisi in laboratorio. Le procedure di campionamento descritte in letteratura si riferiscono quasi esclusivamente a due tipologie di campionatori: a) bottiglie di campionamento tipo Niskin, progettate per il campionamento di acque profonde, ma che non consentono una facile operatività in laboratorio ed un’adeguata conservazione dei gas disciolti dopo il campionamento, soprattutto quando la loro pressione è superiore a quella atmosferica; b) bottiglie di vetro con tappi di gomma e ghiere di alluminio, estraendo i gas disciolti mediante l’immissione di un gas di estrazione, secondo la metodologia descritta in Capasso & Inguaggiato [1998] e Inguaggiato & Rizzo [2004]. In letteratura sono anche riportate metodologie di campionamento, per il prelievo delle acque in profondità, che utilizzano pompe peristaltiche; queste metodologie tuttavia provocano fenomeni di essoluzione e separazione dei gas disciolti, rendendo impossibile un’accurata stima delle quantità di gas disciolti per volume di acqua. Il campionamento di acque profonde, sia marine che lacustri, implica spesso la presenza di volatili disciolti aventi pressioni anche notevolmente superiori a quella atmosferica, con la facile conseguenza di indesiderati effetti di essoluzione precoce e perdita parziale dei gas stessi, poiché tali campioni si trovano a pressione più elevata rispetto a quella della superficie. Essendo, infatti, la concentrazione dei gas disciolti in acqua (Xi) legata alla pressione parziale del gas stesso (Pi), oltre che alla costante di Henry (Khi) (Xi=Pi/Khi), risulta evidente come una diminuzione della pressione rischi di fare raggiungere la sovrassaturazione delle specie gassose, la loro essoluzione e la loro parziale perdita. Quindi risulta di fondamentale importanza prelevare il campione d’acqua, coi gas disciolti, con campionatori in grado d’isolare il campione d’acqua prelevato dalle condizioni di pressione esterne, prevenendo la separazione del gas per depressurizzazione

    Analysis of appeals against the ruling of occupational physicians lodged with the Prevention and Occupational Epidemiology Operative Unit, ASP Palermo (Palermo Health Authority), from 2008-2010

    Get PDF
    Introduction: The responsibility of the Department for Prevention and Safety at the workplace of the Palermo Health Authority (ASP) is to monitor and coordinate the activity of occupational physicians operating in Palermo and its province. One of its obligations is to examine appeals “against the judgment of occupational physicians”, “...and, after carrying out further investigation, confirm, modify or reverse the ruling itself ” (art. 41, par. 6, legislative Decree 81/08). Objectives: The purpose of this study was to analyze the appeals lodged against a “judgment of fitness for work” submitted to the “Health Prevention and Occupational Epidemiology Operative Unit” of the Department of Prevention and Safety at the Workplace of the ASP Palermo, from 2008 to 2010. Methods: The total number of appeals lodged during the three-year period was 211, 174 of which were finalized. Results: The most frequent job category among the appellants was that of blue-collar workers, in various sectors, covering 44.5% of the subjects under study (93 cases). In 64.2% of the processed appeals (131 cases), the judgment of the physician was modified, while in the remaining 36.8% (73 cases) it was confirmed.The work fitness judgment with restrictions was the category against which most appeals were lodged, and the diseases in question mostly concerned the osteoarticular and cardiovascular systems. Conclusion: In a context of continuous change in the labour field and the related risks to the health and safety of workers, the occupational physician must approach the worker in a comprehensive manner,through an assessment of the possible health problems and the working environment in which he/she operates

    Noble gas isotopes reveal degassing-derived eruptions at Deception Island (Antarctica): implications for the current high levels of volcanic activity

    Get PDF
    Deception Island is one of the most active volcanoes in Antarctica with more than twenty explosive eruptions in the past two centuries. Any future volcanic eruption(s) is a serious concern for scientists and tourists, will be detrimental to marine ecosystems and could have an impact to global oceanographic processes. Currently, it is not possible to carry-out low and high frequency volcanic gas monitoring at Deception Island because of the arduous climatic conditions and its remote location. Helium, neon and argon isotopes measured in olivine samples of the main eruptive events (pre-, syn- and post caldera) offer insights into the processes governing its volcanic history. Our results show that: (i) ascending primitive magmas outgassed volatiles with a MORB-like helium isotopic signature (3He/4He ratio); and (ii) variations in the He isotope ratio, as well as intensive degassing evidenced by fractionated 4He/40Ar* values, occurred before the beginning of the main eruptive episodes. Our results show how the pre-eruptive noble gas signals of volcanic activity is an important step toward a better understanding of the magmatic dynamics and has the potential to improve eruption forecasting.This research was supported by the Spanish Government (MICINN) projects: RECALDEC (CTM2009-05919-E/ANT), PEVOLDEC (CTM2011-13578-E/ANT), POSVOLDEC (CTM2016-79617-P)(AEI/FEDER, UE), VOLGASDEC (PGC2018-095693-B-I00)(AEI/FEDER, UE), HYDROCAL (PID2020-114876GB-I00)(MCIN/AEI/10.13039/501100011033), EruptING (PID2021-127189OB-I00) (MCIN/AEI/10.13039/501100011033), and Programa Propio’s project (Universidad de Salamanca-2019 modalidad 1B). A.A-V also thanks the JSPS invitation fellowship (S18113) at the University of Tokyo. A.P.S is grateful for his PhD grant “Programa Propio III Universidad de Salamanca-2021 cofounded by Banco de Santander”.Peer reviewe
    corecore