829 research outputs found

    Analysis of the SFR - M* plane at z<3: single fitting versus multi-Gaussian decomposition

    Get PDF
    The analysis of galaxies on the star formation rate - stellar mass (SFR-M*) plane is a powerful diagnostic for galaxy evolution at different cosmic times. We consider a sample of 24463 galaxies from the CANDELS/GOODS-S survey to conduct a detailed analysis of the SFR-M* relation at redshifts 0.5â©œz<\leqslant z<3 over more than three dex in stellar mass. To obtain SFR estimates, we utilise mid- and far-IR photometry when available, and rest-UV fluxes for all the other galaxies. We perform our analysis in different redshift bins, with two different methods: 1) a linear regression fitting of all star-forming galaxies, defined as those with specific star formation rates log10(sSFR/yr−1)>−9.8\rm log_{10}(sSFR/yr^{-1}) > -9.8, similarly to what is typically done in the literature; 2) a multi-Gaussian decomposition to identify the galaxy main sequence (MS), the starburst sequence and the quenched galaxy cloud. We find that the MS slope becomes flatter when higher stellar mass cuts are adopted, and that the apparent slope change observed at high masses depends on the SFR estimation method. In addition, the multi-Gaussian decomposition reveals the presence of a starburst population which increases towards low stellar masses and high redshifts. We find that starbursts make up ~5% of all galaxies at z=0.5-1.0, while they account for ~16% of galaxies at 2<z<<z<3 with log10(M∗)=_{10}(M^{*})=8.25-11.25. We conclude that the dissection of the SFR-M* in multiple components over a wide range of stellar masses is necessary to understand the importance of the different modes of star formation through cosmic time.Comment: 15 pages, 12 figures, 1 table. Accepted for publication in A&A, after addressing referee report. Main changes with respect to v1: two new appendixes to investigate the impact of redshift outliers and to test a two-Gaussian component fit to the sSFR distribution. No conclusion change

    Morphology and Redshifts of Extremely Red Galaxies in the GOODS/CDFS deep ISAAC field

    Full text link
    We present the photometric redshift distribution of a sample of 198 Extremely Red Galaxies (ERGs) with Ks3.92 (Vega), selected by Roche et al. in 50.4 sq. arcmin of the Chandra Deep Field South (CDFS). The sample has been obtained using ISAAC-VLT and ACS-HST GOODS public data. We also show the results of a morphological study of the 72 brightest ERGs in the z band (z<25, AB).Comment: 2 pages, 2 figures. To appear in the proceedings of the ESO/USM/MPE Workshop "Multiwavelength Mapping of Galaxy Formation and Evolution", Venice, October 13-16, 200

    Assessment of blue swimmer crab recruitment and breeding stock levels in the Peel-Harvey Estuary and status of the Mandurah to Bunbury Developing Crab Fishery

    Get PDF
    Two projects were funded to investigate iconic blue swimmer crab stocks in the Peel-Harvey Estuary and Mandurah to Bunbury Developing Crab Fishery. One was a four year project (2007 – 2011) to undertake the following: i) determine recruitment and spawning stock levels of the crab population in the Peel-Harvey Estuary and whether the status of stocks has changed considerably in the past decade, ii) establish a commercial monitoring program to assess the length frequency and sex ratio of crabs captured by commercial fishers, and iii) develop a commercial monitoring program in the Mandurah to Bunbury Developing Crab Fishery and South West Trawl Managed Fishery. A fishery-independent study was conducted at 15 sites throughout the estuary per month between December 2007 and December 2011. Sites chosen were identical to those surveyed between 1995 and 1998, to allow historical comparisons. Additional trap sites were sampled outside the Peel-Harvey Estuary monthly from August 2008 to December 2011 to understand crab abundance, composition and movement between estuarine and oceanic waters. A second project was a 12-month recreational survey in the Peel-Harvey Estuary between November 2007 and October 2008 to provide an estimate of recreational catch and effort

    The infrared luminosity function of galaxies at redshifts z=1 and z~2 in the GOODS fields

    Get PDF
    We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colours, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.Comment: Accepted for publication in the ApJ. 33 pages, 15 figures. Uses emulateap

    The evolution of Ks-selected galaxies in the GOODS/CDFS deep ISAAC field

    Get PDF
    We present estimated redshifts and derived properties for a sample of 1663 galaxies with Ks <= 22 (Vega), selected from 50.4 sq.arcmin of the GOODS/CDFS field with deep ISAAC imaging, and make an extensive comparison of their properties with those of the extremely red galaxies (ERGs) selected in the same field. We study in detail the evolution of Ks-selected galaxies up to redshifts z ~ 4 and clarify the role of ERGs within the total Ks-band galaxy population. We compute the total Ks-band luminosity function (LF) and compare its evolution with the ERG LF. Up to =2.5, the bright end of the Ks-band LF shows no sign of decline, and is progressively well reproduced by the ERGs with increasing redshift. We also explore the evolution of massive systems present in our sample: up to 20%-25% of the population of local galaxies with assembled stellar mass M>1x10^11 Msun has been formed before redshift z ~ 4, and contains ~ 45% to 70% of the stellar mass density of the Universe at that redshift. Within our sample, the comoving number density of these massive systems is then essentially constant down to redshift z ~ 1.5, by which point most of them have apparently evolved into (I-Ks)-selected ERGs. The remaining massive systems observed in the local Universe are assembled later, at redshifts z <= 1.5. Our results therefore suggest a two-fold assembly history for massive galaxies, in which galaxy/star formation proceeds very efficiently in high mass haloes at very high redshift.Comment: Revised version accepted by MNRAS. 17 pages, 15 figure

    Recovering the properties of high redshift galaxies with different JWST broad-band filters

    Get PDF
    Imaging with the James Webb Space Telescope (JWST) will allow for observing the bulk of distant galaxies at the epoch of reionisation. The recovery of their properties, such as age, color excess E(B-V), specific star formation rate (sSFR) and stellar mass, will mostly rely on spectral energy distribution fitting, based on the data provided by JWST's two imager cameras, namely the Near Infrared Camera (NIRCam) and the Mid Infrared Imager (MIRI). In this work we analyze the effect of choosing different combinations of NIRCam and MIRI broad-band filters, from 0.6 {\mu}m to 7.7 {\mu}m, on the recovery of these galaxy properties. We performed our tests on a sample of 1542 simulated galaxies, with known input properties, at z=7-10. We found that, with only 8 NIRCam broad-bands, we can recover the galaxy age within 0.1 Gyr and the color excess within 0.06 mag for 70% of the galaxies. Besides, the stellar masses and sSFR are recovered within 0.2 and 0.3 dex, respectively, at z=7-9. Instead, at z=10, no NIRCam band traces purely the {\lambda}> 4000 {\AA} regime and the percentage of outliers in stellar mass (sSFR) increases by > 20% (> 90%), in comparison to z=9. The MIRI F560W and F770W bands are crucial to improve the stellar mass and the sSFR estimation at z=10. When nebular emission lines are present, deriving correct galaxy properties is challenging, at any redshift and with any band combination. In particular, the stellar mass is systematically overestimated in up to 0.3 dex on average with NIRCam data alone and including MIRI observations improves only marginally the estimation.Comment: 21 pages, 11 figures, 4 tables. Accepted for publication at the ApJ

    Star formation in galaxies at z~4-5 from the SMUVS survey: a clear starburst/main-sequence bimodality for Halpha emitters on the SFR-M* plane

    Get PDF
    We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of "Halpha excess" sources reaches 37-40% for galaxies with stellar masses log10(M*/Msun) ~ 9-10, and decreases to <20% at log10(M*/Msun) ~ 10.7. At higher stellar masses, however, the trend reverses, although this is likely due to AGN contamination. We derive star formation rates (SFR) and specific SFR (sSFR) from the inferred Halpha equivalent widths (EW) of our "Halpha excess" galaxies. We show, for the first time, that the "Halpha excess" galaxies clearly have a bimodal distribution on the SFR-M* plane: they lie on the main sequence of star formation (with log10(sSFR/yr^{-1})<-8.05) or in a starburst cloud (with log10(sSFR/yr^{-1}) >-7.60). The latter contains ~15% of all the objects in our sample and accounts for >50% of the cosmic SFR density at z=3.9-4.9, for which we derive a robust lower limit of 0.066 Msun yr^{-1} Mpc^{-3}. Finally, we identify an unusual >50sigma overdensity of z=3.9-4.9 galaxies within a 0.20 x 0.20 sq. arcmin region. We conclude that the SMUVS unique combination of area and depth at mid-IR wavelengths provides an unprecedented level of statistics and dynamic range which are fundamental to reveal new aspects of galaxy evolution in the young Universe.Comment: 18 pages, 11 figures, 1 table. Re-submitted to the ApJ, after addressing referee report. Main changes with respect to v1: a new section and a new appendix have been added to investigate further the origin and robustness of the sSFR bimodality. No conclusion change

    Proximate and ultimate causes of signal diversity in the electric fish Gymnotus

    Get PDF
    A complete understanding of animal signal evolution necessitates analyses of both the proximate (e. g. anatomical and physiological) mechanisms of signal generation and reception, and the ultimate (i.e. evolutionary) mechanisms underlying adaptation and diversification. Here we summarize the results of a synthetic study of electric diversity in the species-rich neotropical electric fish genus Gymnotus. Our study integrates two research directions. The first examines the proximate causes of diversity in the electric organ discharge (EOD) - which is the carrier of both the communication and electrolocation signal of electric fishes - via descriptions of the intrinsic properties of electrocytes, electrocyte innervation, electric organ anatomy and the neural coordination of the discharge (among other parameters). The second seeks to understand the ultimate causes of signal diversity -via a continent-wide survey of species diversity, species-level phylogenetic reconstructions and field-recorded head-to-tail EOD (ht-EOD) waveforms (a common procedure for characterizing the communication component of electric fish EODs). At the proximate level, a comparative morpho-functional survey of electric organ anatomy and the electromotive force pattern of the EOD for 11 species (representing most major clades) revealed four distinct groups of species, each corresponding to a discrete area of the phylogeny of the genus and to a distinct type of ht-EOD waveform. At the ultimate level, our analyses (which emphasize the ht-EOD) allowed us to conclude that selective forces from the abiotic environment have had minimal impact on the communication component of the EOD. In contrast, selective forces of a biotic nature - imposed by electroreceptive predators, reproductive interference from heterospecific congeners, and sexual selection - may be important sources of diversifying selection on Gymnotus signals

    The Complex Structure of the Multi-Phase Galactic Wind in a Starburst Merger

    Full text link
    Neutral outflows have been detected in many ultraluminous infrared galaxies (ULIRGs) via the Na I D λλ5890,5896\lambda\lambda 5890, 5896 absorption-line doublet. For the first time, we have mapped and analyzed the 2-D kinematics of a cool neutral outflow in a ULIRG, F10565+2448, using the integral field unit (IFU) on Gemini North to observe the Na I D feature. At the same time we have mapped the ionized outflow with the [NII] and Hα\alpha emission lines. We find a systemic rotation curve that is consistent with the rotation of the molecular disk determined from previous CO observations. The absorption lines show evidence of a nuclear outflow with a radial extent of at least 3 kpc, consistent with previous observations. The strength of the Na I D lines have a strong, spatially resolved correlation with reddening, suggesting that dust is present in the outflow. Surprisingly, the outflow velocities of the neutral gas show a strong asymmetry in the form of a major-axis gradient that is opposite in sign to disk rotation. This is inconsistent with entrained material rotating along with the galaxy or with a tilted minor-axis outflow. We hypothesize that this unusual behavior is due to an asymmetry in the distribution of the ambient gas. We also see evidence of asymmetric ionized outflow in the emission-line velocity map, which appear to be decoupled from the neutral outflow. Our results strengthen the hypothesis that ULIRG outflows differ in morphology from those in more quiescent disk galaxies.Comment: Accepted to Ap
    • 

    corecore