188 research outputs found

    Bundle Theory of Improper Spin Transformations

    Full text link
    {\it We first give a geometrical description of the action of the parity operator (P^\hat{P}) on non relativistic spin 12{{1}\over{2}} Pauli spinors in terms of bundle theory. The relevant bundle, SU(2)⊙Z2→O(3)SU(2)\odot \Z_2\to O(3), is a non trivial extension of the universal covering group SU(2)→SO(3)SU(2)\to SO(3). P^\hat{P} is the non relativistic limit of the corresponding Dirac matrix operator P=iγ0{\cal P}=i\gamma_0 and obeys P^2=−1\hat{P}^2=-1. Then, from the direct product of O(3) by Z2\Z_2, naturally induced by the structure of the galilean group, we identify, in its double cover, the time reversal operator (T^\hat{T}) acting on spinors, and its product with P^\hat{P}. Both, P^\hat{P} and T^\hat{T}, generate the group Z4×Z2\Z_4 \times \Z_2. As in the case of parity, T^\hat{T} is the non relativistic limit of the corresponding Dirac matrix operator T=γ3γ1{\cal T}=\gamma^3 \gamma^1, and obeys T^2=−1\hat{T}^2=-1.}Comment: 8 pages, Plaintex; titled changed, minor text modifications, one reference complete

    Refining the phenotype associated with biallelic DNAJC21 mutations

    Get PDF
    Accepted manuscriptInherited bone marrow failure syndromes (IBMFS) are caused by mutations in genes involved in genomic stability. Although they may be recognized by the association of typical clinical features, variable penetrance and expressivity are common, and clinical diagnosis is often challenging. DNAJC21, which is involved in ribosome biogenesis, was recently linked to bone marrow failure. However, the specific phenotype and natural history remain to be defined. We correlate molecular data, phenotype, and clinical history of 5 unreported affected children and all individuals reported in the literature. All patients present features consistent with IBMFS: bone marrow failure, growth retardation, failure to thrive, developmental delay, recurrent infections, and skin, teeth or hair abnormalities. Additional features present in some individuals include retinal abnormalities, pancreatic insufficiency, liver cirrhosis, skeletal abnormalities, congenital hip dysplasia, joint hypermobility, and cryptorchidism. We suggest that DNAJC21-related diseases constitute a distinct IBMFS, with features overlapping Shwachman-Diamond syndrome and Dyskeratosis congenita, and additional characteristics that are specific to DNAJC21 mutations. The full phenotypic spectrum, natural history, and optimal management will require more reports. Considering the aplastic anemia, the possible increased risk for leukemia, and the multisystemic features, we provide a checklist for clinical evaluation at diagnosis and regular follow-up.FCT—Fundação para a Ciência e a Tecnologia (SFRH/BD/84650/2010)info:eu-repo/semantics/publishedVersio

    Trace Anomaly and Backreaction of the Dynamical Casimir Effect

    Full text link
    The Casimir energy for massless scalar field which satisfies priodic boundary conditions in two-dimensional domain wall background is calculated by making use of general properties of renormalized stress-tensor. The line element of domain wall is time dependent, the trace anomaly which is the nonvanishing TμμT^{\mu}_{\mu} for a conformally invariant field after renormalization, represent the back reaction of the dynamical Casimir effect.Comment: 8 pages, no figures, typos corrected, discussion added, has been accepted for the publication in GR

    Green functions for generalized point interactions in 1D: A scattering approach

    Get PDF
    Recently, general point interactions in one dimension has been used to model a large number of different phenomena in quantum mechanics. Such potentials, however, requires some sort of regularization to lead to meaningful results. The usual ways to do so rely on technicalities which may hide important physical aspects of the problem. In this work we present a new method to calculate the exact Green functions for general point interactions in 1D. Our approach differs from previous ones because it is based only on physical quantities, namely, the scattering coefficients, RR and TT, to construct GG. Renormalization or particular mathematical prescriptions are not invoked. The simple formulation of the method makes it easy to extend to more general contexts, such as for lattices of NN general point interactions; on a line; on a half-line; under periodic boundary conditions; and confined in a box.Comment: Revtex, 9 pages, 3 EPS figures. To be published in PR

    Disruption of PHF21A causes syndromic intellectual disability with craniofacial anomalies, epilepsy, hypotonia, and neurobehavioral problems including autism

    Get PDF
    BACKGROUND: PHF21A has been associated with intellectual disability and craniofacial anomalies based on its deletion in the Potocki-Shaffer syndrome region at 11p11.2 and its disruption in three patients with balanced translocations. In addition, three patients with de novo truncating mutations in PHF21A were reported recently. Here, we analyze genomic data from seven unrelated individuals with mutations in PHF21A and provide detailed clinical descriptions, further expanding the phenotype associated with PHF21A haploinsufficiency. METHODS: Diagnostic trio whole exome sequencing, Sanger sequencing, use of GeneMatcher, targeted gene panel sequencing, and MiSeq sequencing techniques were used to identify and confirm variants. RT-qPCR was used to measure the normal expression pattern of PHF21A in multiple human tissues including 13 different brain tissues. Protein-DNA modeling was performed to substantiate the pathogenicity of the missense mutation. RESULTS: We have identified seven heterozygous coding mutations, among which six are de novo (not maternal in one). Mutations include four frameshifts, one nonsense mutation in two patients, and one heterozygous missense mutation in the AT Hook domain, predicted to be deleterious and likely to cause loss of PHF21A function. We also found a new C-terminal domain composed of an intrinsically disordered region. This domain is truncated in six patients and thus likely to play an important role in the function of PHF21A, suggesting that haploinsufficiency is the likely underlying mechanism in the phenotype of seven patients. Our results extend the phenotypic spectrum of PHF21A mutations by adding autism spectrum disorder, epilepsy, hypotonia, and neurobehavioral problems. Furthermore, PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. CONCLUSION: Deleterious nonsense, frameshift, and missense mutations disrupting the AT Hook domain and/or an intrinsically disordered region in PHF21A were found to be associated with autism spectrum disorder, epilepsy, hypotonia, neurobehavioral problems, tapering fingers, clinodactyly, and syndactyly, in addition to intellectual disability and craniofacial anomalies. This suggests that PHF21A is involved in autism spectrum disorder and intellectual disability, and its haploinsufficiency causes a diverse neurological phenotype
    • …
    corecore