84 research outputs found

    Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids

    Get PDF
    Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an in vitro system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 which was restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in cell fate trajectories. Mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery

    Variegated silencing through epigenetic modifications of a large Xq region in a case of balanced X;2 translocation with Incontinentia Pigmenti-like phenotype

    Get PDF
    Molecular mechanisms underlying aberrant phenotypes in balanced X;autosome translocations are scarcely understood. We report the case of a de novo reciprocal balanced translocation X;2(q23;q33) presenting phenotypic alterations highly suggestive of Incontinentia Pigmenti (IP) syndrome, a genodermatosis with abnormal skin pigmentation and neurological failure, segregating as X-linked dominant disorder. Through molecular studies, we demonstrated that the altered phenotype could not be ascribed to chromosome microdeletions or to XIST-mediated inactivation of Xq24-qter. Interestingly, we found that the Xq24-qter region, which translocated downstream of the heterochromatic band 2q34, undergoes epigenetic silencing mediated by DNA methylation and histone alterations. Among the downregulated genes, we found the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase gamma (IKBKG/NEMO), the causative gene of IP. We hypothesize that a mosaic functional nullisomy of the translocated genes, through a Position Effect Variegation-like heterochromatization, might be responsible for the proband's phenotypic anomalies. Partial silencing of IKBKG may be responsible for the skin anomalies observed, thereby mimicking the IP pathological condition. In addition to its clinical relevance, this paper addresses fundamental issues related to the chromatin status and nuclear localization of a human euchromatic region translocated proximally to heterochromatin. In conclusion, the study provides new insight into long-range gene silencing mechanisms and their direct impact in human disease

    Clinical and functional consequences of C-terminal variants in MCT8

    Get PDF
    CONTEXT: Genetic variants in SLC16A2, encoding the thyroid hormone transporter MCT8, can cause intellectual and motor disability and abnormal serum thyroid function tests, known as MCT8 deficiency. The C-terminal domain of MCT8 is poorly conserved, which complicates prediction of the deleteriousness of variants in this region. We studied the functional consequences of 5 novel variants within this domain and their relation to the clinical phenotypes. METHODS: We enrolled male subjects with intellectual disability in whom genetic variants were identified in exon 6 of SLC16A2. The impact of identified variants was evaluated in transiently transfected cell lines and patient-derived fibroblasts. RESULTS: Seven individuals from 5 families harbored potentially deleterious variants affecting the C-terminal domain of MCT8. Two boys with clinical features considered atypical for MCT8 deficiency had a missense variant [c.1724A>G;p.(His575Arg) or c.1796A>G;p.(Asn599Ser)] that did not affect MCT8 function in transfected cells or patient-derived fibroblasts, challenging a causal relationship. Two brothers with classical MCT8 deficiency had a truncating c.1695delT;p.(Val566*) variant that completely inactivated MCT8 in vitro. The 3 other boys had relatively less-severe clinical features and harbored frameshift variants that elongate the MCT8 protein [c.1805delT;p.(Leu602HisfsTer680) and c.del1826-1835;p.(Pro609GlnfsTer676)] and retained ~50% residual activity. Additional truncating variants within transmembrane domain 12 were fully inactivating, whereas those within the intracellular C-terminal tail were tolerated. CONCLUSIONS: Variants affecting the intracellular C-terminal tail of MCT8 are likely benign unless they cause frameshifts that elongate the MCT8 protein. These findings provide clinical guidance in the assessment of the pathogenicity of variants within the C-terminal domain of MCT8

    TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease

    Get PDF
    Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    Get PDF
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder

    Supplementary material to: Long-term efficacy of T3 analogue Triac in children and adults with MCT8 deficiency: a real-life retrospective cohort study

    Get PDF

    Sequenziamento dell’esoma in pazienti pediatrici con malattia senza diagnosi

    Get PDF
    Introduzione ed obiettivi. Dall’aprile 2016, la sezione di Pediatria dell’AOU Federico II partecipa al Telethon Undiagnosed Program (TUDP) che ha l’obiettivo di raggiungere una diagnosi molecolare in pazienti pediatrici con malattie genetiche senza diagnosi attraverso il sequenziamento dell’intero esoma (WES). Il programma ha arruolato pazienti senza diagnosi attraverso una rete nazionale di centri pediatrici. I pazienti con malattie genetiche senza diagnosi sono stati sottoposti a valutazione clinica ed i casi selezionati sono stati discussi in riunioni plenarie con altri clinici partecipanti al TUDP. I casi selezionati sono stati classificati in base a criteri predefiniti, come la severità della malattia e l’assenza di diagnosi nonostante estensive valutazioni diagnostiche. I trio (genitori più paziente) sono stati analizzati mediante WES ed in alcuni casi con sequenziamento dell’intero genoma. Le varianti candidate sono state filtrate in base alla modalità di trasmissione, alla frequenza nei controlli normali ed alle predizioni del loro effetto sulla funzione delle proteine. In casi selezionati le varianti candidate sono state valutate mediante studi funzionali per dimostrarne la patogenicità. I risultati sono stati condivisi con altri centri internazionali coinvolti in programmi simili di malattie senza diagnosi. Risultati. Dei 153 casi arruolati, 125 hanno completato il WES e l’intero processo di analisi. In 56 famiglie, sono state rilevate varianti causative ed in 10 casi sono state identificate varianti candidate. I geni che interessano più casi includono ADNP, ASXL3, DDX3X, GRIN1 e GRIN2B. 16 pazienti hanno mostrato un fenotipo più esteso o più severo rispetto a quanto riportato in letteratura (NMNAT1, SMARCA2, WDR81, KARS, DST, RAB3GAP1 e ATP6V1B2) portando al riconoscimento di condizioni alleliche. Inoltre, abbiamo identificato nuovi geni-malattia, come POLR2A, DHX37, SMPD4, RAB10 e B4GALT5. Nel complesso, il tasso diagnostico del WES è stato del 48%, che è lievemente superiore rispetto a quello riportato in altri studi della letteratura. Questo più alto tasso diagnostico è probabilmente dovuto a criteri più stringenti per l’arruolamento nel TUDP dei pazienti con malattia senza diagnosi. Conclusioni: Il WES ha permesso l’espansione di fenotipi di malattie già conosciute ma ha anche portato alla scoperta di nuovi geni-malattia
    • …
    corecore