556 research outputs found

    Valuing Transgenic Cotton Technologies Using a Risk/Return Framework

    Get PDF
    Stochastic Efficiency with Respect to a Function (SERF) is used to rank transgenic cotton technology groups and place an upper and lower bound on their value. Yield and production data from replicated plot experiments are used to build cumulative distribution functions of returns for nontransgenic, Roundup Ready, Bollgard, and stacked gene cotton cultivars. Analysis of Arkansas data indicated that the stacked gene and Roundup Ready technologies would be preferred by a large number of risk neutral and risk averse producers as long as the costs of the technology and seed are below the lower bounds calculated in this manuscript.cotton, financial risk, market value, SERF, transgenic, Agribusiness, Crop Production/Industries, Risk and Uncertainty, Q12, Q16,

    COVID-19-Associated Bifacial Weakness with Paresthesia Subtype of Guillain-Barré Syndrome

    Get PDF
    We report a case of bifacial weakness with paresthesia, a recognized Guillain-Barré syndrome subtype characterized by rapidly progressive facial weakness and paresthesia without ataxia or other cranial neuropathies, which was temporally associated with antecedent coronavirus 2019 (COVID-19). This case highlights a potentially novel but critically important neurologic association of the COVID-19 disease process. Herein, we detail the clinicoradiologic work-up and diagnosis, clinical course, and multidisciplinary medical management of this patient with COVID-19. This case is illustrative of the increasingly recognized but potentially underreported neurologic manifestations of COVID-19, which must be considered and further investigated in this pandemic disease

    Understanding variation in salamander ionomes: A nutrient balance approach

    Get PDF
    Ecological stoichiometry uses information on a few key biological elements (C, N, and P) to explain complex ecological patterns. Although factors driving variation in these elements are well-established, expanding stoichiometric principles to explore dynamics of the many other essential elements comprising biological tissues (i.e., the ionome) is needed to determine their metabolic relationships and better understand biological control of elemental flows through ecosystems. 2. In this paper, we report observations of ionomic variation in two species of salamander (Ambystoma opacum and A. talpoideum) across ontogenic stages using specimens from biological collections of two wetlands sampled over a 30-year period. This unique data set allowed us to explore the extent of ionomic variation between species, among ontogenic stages, between sites, and through time. 3. We found species- and to a lesser extent site-specific differences in C, N, and P along with 13 other elements forming salamander ionomes but saw no evidence of temporal changes. Salamander ionomic composition was most strongly related to ontogeny with relatively higher concentrations of many elements in adult males (i.e., Ca, P, S, Mg, Zn, and Cu) compared to metamorphic juveniles, which had greater amounts of C, Fe, and Mn. 4. In addition to patterns of individual elements, covariance among elements was used to construct multi-elemental nutrient balances, which revealed differences in salamander elemental composition between species and sites and changes in elemental proportions across ontogenic development. These multi-elemental balances distinguished among species-site-ontogenic stage groups better than using only C, N, and P. 5. Overall, this study highlights the responsiveness of consumer ionomes to life-history and environmental variation while reflecting underlying relationships among elements tied to biological function. As such, ionomic studies can provide important insights into factors shaping consumer elemental composition and for predicting how these changes might affect higher-order ecological processes

    Papers Dietary fat intake and prevention of cardiovascular disease: systematic review

    Get PDF
    Abstract Objective To assess the effect of reduction or modification of dietary fat intake on total and cardiovascular mortality and cardiovascular morbidity. Design Systematic review. Data sources Cochrane Library, Medline, Embase, CAB abstracts, SIGLE, CVRCT registry, and biographies were searched; trials known to experts were included. Included studies Randomised controlled trials stating intention to reduce or modify fat or cholesterol intake in healthy adult participants over at least six months. Inclusion decisions, validity, and data extraction were duplicated. Meta-analysis (random effects methodology), meta-regression, and funnel plots were performed. Results 27 studies (30 902 person years of observation) were included. Alteration of dietary fat intake had small effects on total mortality (rate ratio 0.98; 95% confidence interval 0.86 to 1.12). Cardiovascular mortality was reduced by 9% (0.91; 0.77 to 1.07) and cardiovascular events by 16% (0.84; 0.72 to 0.99), which was attenuated (0.86; 0.72 to 1.03) in a sensitivity analysis that excluded a trial using oily fish. Trials with at least two years' follow up provided stronger evidence of protection from cardiovascular events (0.76; 0.65 to 0.90). Conclusions There is a small but potentially important reduction in cardiovascular risk with reduction or modification of dietary fat intake, seen particularly in trials of longer duration

    Integrin-Associated Protein Association With Src Homology 2 Domain Containing Tyrosine Phosphatase Substrate 1 Regulates IGF-I Signaling In Vivo

    Get PDF
    OBJECTIVE—Smooth muscle cell (SMC) maintained in medium containing normal levels of glucose do not proliferate in response to IGF-I, whereas cells maintained in medium containing 25 mmol/l glucose can respond. The aim of this study was to determine whether signaling events that have been shown to be required for stimulation of SMC growth were regulated by glucose concentrations in vivo

    Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity

    Get PDF
    Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
    corecore