81 research outputs found

    Morpho-sedimentary evolution of a microtidal meandering channel driven by 130-years of natural and anthropogenic modifications of the Venice Lagoon (Italy)

    Get PDF
    Abstract Tidal channels form the pathways for tidal currents to propagate and distribute clastic sediments and nutrients, thus providing a primary control on tidal-landscape ecomorphodynamics. Most tidal channels in both estuarine and lagoonal environments have a tendency to meander, yet very few studies exist that investigate the full spectrum of processes controlling tidal meander morpho-sedimentary evolution. The Venice Lagoon (Italy) offers a unique opportunity to shed light on this topic, because a long record of morphological and sedimentary data is available, which allows one to relate tidal channel evolution to the hydrodynamic and morphological changes undergone by the lagoon. In particular, during the last 130 years, feedback between rising relative sea levels and anthropogenic interventions have caused severe modifications of the Lagoon hydro- and morpho-dynamics. Here we investigate how these modifications fed back into the morpho-sedimentary evolution of a meandering tidal channel located in the northern Lagoon. Combining extensive datasets of aerial photographs, topographic and bathymetric surveys, geophysical investigations, sedimentary core analysis, and numerical modeling, we show that enhanced local tidal ranges and water discharges determine adjustments of channel cross-sectional geometries proportional to increasing tidal prisms, while changes in local tidal asymmetries caused modifications of the local sediment transport regime, resulting in the development of bar-pool patterns according to the dominant tidal phase. Such bar-pool patterns eventually determine channel migration through a bar-push mechanism controlled by a fluvial-like, quasi-linear relationship between local channel curvature and lateral migration rates. Critical differences in sediment transport regime are however highlighted between fluvial and tidal meanders, the latter being potentially characterized by high concentrations of suspended sediment during periods of slack waters when wind-driven sediment transport processes are not negligible. This could hamper the formation of high-relief bedforms, with profound implications for the sedimentology of tidal point-bar deposits

    Anabolic effects and inhibition of interleukin 6 production induced by neridronate on human osteoblasts

    Get PDF
    Bisphosphonates (BPs) are pharmacological compounds widely used in the treatment of a variety of bone-related diseases, particularly where the bone-turnover is skewed in favour of osteolysis. The mechanisms by which BPs reduce bone-resorption directly acting on osteoclasts (OCs) are now largely clarified even at molecular level. The researches concerning the BPs effects on osteoblasts (OBs) have instead shown variable results. Objectives: We have investigated the efficacy of neridronate (NER), an amino-BP, as anabolic agent on human OBs. Moreover, we have tried to verify if NER is able to negatively modulate the production of IL-6 on OBs stimulated or not by the pro-inflammatory cytokine Il-1b. Methods: We have tested if different concentrations of NER (from 10-11M to 10-3M), added to primary human OB cultures, could affect the cells number, the endogenous cellular alkaline phosphatase (ALP) activity, the collagen I (COLI) synthesis, the formation of mineralized nodules and the IL-6 production. Our experimental approach was performed testing a wide range of NER concentrations because, under physiological conditions, OBs seems to be exposed to variable and transient levels of the drug. Results: Our results show that NER doesn't negatively affect in vitro the viability, proliferation and cellular activity of human OBs, even after 20 days of exposure to concentrations ²10-5 M (therapeutic dose). In addition, NER seems to enhance the differentiation of cultured OBs in mature bone-forming cells. A maximum increase of COL-I synthesis (+25% after 4 days; p<0.05), ALP activity (+50% after 10 days; p<0.01) and mineralized nodules (+48% after 20 days; p<0.05) was observed in cultures treated with NER 10-8M. A maximal reduction of IL-6 secretion (-24% on IL-1b stimulated cultures and -29% on unstimulated cultures) was observed for NER 10-9 M. Conclusions: These results encourage the use of neridronate in therapy of demineralizing metabolic bone disorders

    Wissenschaftliche Monitoringkonzepte fĂĽr die Deutsche Bucht (WIMO) - Abschlussbericht

    Get PDF
    The state and development of coastal marine systems and an understanding of the interaction of organisms, sea floor, water column, and biochemical and physical processes can only be obtained by a combination of long-term monitoring and modelling approaches of different complexity. A need for the development and evaluation of monitoring strategies is driven by a framework of different European and German regulations. The research project WIMO (Scientific Monitoring Concepts for the German Bight) has developed concepts and methods that aim at a fundamental scientific understanding of marine systems and also meet monitoring requirements of European legislation and regulations like the EU Marine Strategy Framework Directive. In this final report examples of common descriptors of ecosystem state like seabed integrity, eutrophication, and biodiversity are discussed. It has been assessed to what extent established measuring procedures used to survey the characteristics of the sea floor, and newly developed technologies are eligible for governmental monitoring. The significance of integrative modelling for linking and visualising results of measurements and models is illustrated. It is shown how new concepts have been implemented into governmental monitoring in the form of web based data sheets. These insights enable continuous analyses and developments in the future
    • …
    corecore