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ABSTRACT The synthesis and the evaluation of the thiol peroxidase like antioxidant properties of -functionalized symmetric 

and non-symmetric organochalcogenides have been explored. The tested catalysts were synthesized exploiting the reactivity of 

strained heterocycles with silyl chalcogenides. Oxygen-, nitrogen-, and sulfur-containing selenides and tellurides were efficiently 

achieved from the corresponding epoxides, aziridines, and thiiranes through mild and regioselective ring opening reactions. The 

thiol peroxidase catalytic activity was investigated by using the dithiothreitol (DTT) oxidation model. The results showed that the 

nature of the -substituent plays a crucial role in modulating the catalytic properties of the studied GPx mimics. This effect can 

be reasonably ascribed to the presence of chalcogen bonding interactions involving the selenium or the tellurium atom and the 

heteroatom (O, S) placed on the moiety at C-2. 
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INTRODUCTION 

  Organoselenides play an important 

role in the chemical sciences, with wide 

application in synthesis, material sciences, 

and medicinal chemistry.
1
 The main 

biological form of selenium is represented 

by L-selenocysteine (Sec). Due to the 

unique features of the selenium atom, Sec-

containing selenoenzymes possess an array 

of important biological properties and their 

activity results dramatically increased with 

respect to the cysteine-containing analogues. 
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Glutathione peroxidase (GPx), one of the 

most important mammalian selenoenzymes, 

is involved in the detoxification of aerobic 

living cells from reactive oxygen species 

(ROS), catalyzing the reduction of 

hydroperoxides at the expenses of two 

molecules of glutathione (GSH), which are, 

in turn, oxidized to GSSG.
1,2

 

The lack of antioxidant defenses results in 

an increased ROS concentration, which has 

been related to the occurrence of a number 

of diseases, such as cancer, atherosclerosis, 

diabetes, neurodegenerative diseases, and 

immune disorder.
3
 In this scenario, the 

development of novel chalcogen-containing 

antioxidants has attracted growing interest 

among organic and medicinal chemists, as 

proven by the number of recent papers 

focusing on this topic. Several 

organoselenium
4
 and, more recently, 

organotellurium
5
 compounds have indeed 

been described as GPx mimics, being able to 

catalyze the reduction of hydroperoxides in 

the presence of thiols as cofactors. 

Intriguingly, organochalcogenides bearing 

N- and O-, containing moieties have shown 

promising pharmacological properties. 

Furthermore, as the introduction of 

heteroatom-containing functional groups 

close to the chalcogen atom may result in a 

significant change of the catalytic 

antioxidant activity, the nature of these 

substituents has to be considered in order to 

design novel functionalized antioxidants 

with enhanced catalytic properties.
6
 

We report herby our studies on the thiol 

peroxidase like antioxidant properties of 

variously functionalized symmetric and non-

symmetric selenides and tellurides, in order 

to evaluate the effect of different functional 

groups on the antioxidant activity. 

 

RESULTS AND DISCUSSION 

 Our long standing interest in the 

chemistry of silyl chalcogenides led us to 

develop novel selective silicon-mediated 

procedures towards new variously 

functionalized selenides.
7
 Recently we also 

reported the synthesis of functionalized aryl-

alkyl- and dialkyl-tellurides, exploiting the 

reactivity of strained heterocycles with 

(phenyltelluro)trimethylsilane (PhTeSiMe3) 

or in situ generated Li2Te.
8
 These findings 

are summarized in the Scheme 1. All the 

ring opening reactions herein described 

occurred with high regioselectivity and 

showed a broad scope and functional groups 

tolerability.  
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Scheme 1. Synthesis of functionalized chalcogen-

containing molecules through the ring opening of 

three-membered heterocycles. Reagents and 

conditions: a) (Me3Si)2Se (1.6 eq.), TBAF, THF, r.t.; 

b) and c) (Me3Si)2Se (0.6 eq.), TBAF, THF, r.t.; d) 

PhSeSiMe3 (1.1 eq.), TBAF, r.t., 6 h; e) PhSeSiMe3 

(1.1 eq.), TBAF, 0°C; f) and g) Li2Te (0.5 eq, 

generated from elemental Te and LiBEt3H), r.t., 12h; 

h) PhTeSiMe3 (1.1 eq.), TBAF, r.t., 6 h; i) 

PhTeSiMe3 (1.1 eq.), TBAF, 0°C. 

 

These procedures have also been applied to 

the synthesis of new sulfur-, selenium-, and 

tellurium-containing small molecules with 

interesting biological properties as 

antioxidants
9
 and enzyme inhibitors.

10
 

 Having in hands a versatile approach 

to a plethora of differently substituted -

functionalized chalcogenides, we focused on 

evaluating their thiol peroxidase catalytic 

activity in order to elucidate whether the  

substituent could affect the catalytic 

properties.  

 The two homologous series of 

selenides and tellurides reported in Figure 1 

were studied. The GPx-like activity of these 

compounds was assessed using the 

dithiothreitol (DTT) oxidation method 

reported by Iwaoka and co-workers.
11

 

Results of this investigation are listed in 

Table 1. The time required to halve the 

initial DTTred concentration, often indicated 

as T50, is commonly used to compare the 

thiol peroxidase-like activity of similar 

compounds.  

 

Figure 1. -functionalized organochalcogenides as 

GPx-like catalysts. 

 

As reported in Table 1, all the studied 

organotellurides proved to be much more 
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active catalysts with respect to their 

selenium containing analogues. These 

findings are consistent with the results 

reported by other authors on the activity of 

organochalcogenides.
12

  

 

Table 1. Thiol-peroxidase like activity of 

organoselenides and organotellurides according 

dithiothreitol (DTT) oxidation method. 

 

Furthermore, -hydroxy substituted 

derivatives 1a, 2a, 4a, and 5a showed better 

catalytic properties with respect to their N-

Ts protected -amino substituted analogues 

1b, 2b, 4b, and 5b. Interestingly, also 

disulfides 3 and 6, bearing the phenylseleno 

and phenyltelluro moiety, respectively, 

behaved as poor catalysts, displaying a 

significantly lower activity when compared 

with 2a and 5a. Therefore, the nature of the 

substituent at the C-2 plays an important 

role in determining the catalytic properties. 

We recently reported that this effect is 

reasonably due to the presence of chalcogen 

bonding interactions (ChB)
13

 involving the 

oxygen or the sulfur and the catalytic 

chalcogen atom (Se or Te), as shown in 

Figure 2.
9  

 

 

Figure 2. Reasonable intramolecular chalcogen 

bonding interactions for selenium- or tellurium-

containing amines (2b, 5b) and disulfides (3, 6).  

 

 Support for the proposed effect of 

ChB interactions on the GPx-like activity 

was provided by studying the catalytic 

properties of the -phenyltelluro amine 7 

and the -phenyltelluro sulfide 8 which, due 

to the absence of the tosyl group and the 

disulfide moiety, cannot exhibit Te∙∙∙O/S 

nonbonded interactions. Organotellurides 7 

and 8 were efficiently synthesized from the 

corresponding aziridine and thiirane 
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(Scheme 2). The thiol peroxidase catalytic 

activity of 7 and 8, determined through the 

DTT oxidation test, was found to be 

excellent; having T50 values shorter than 2 

minutes, they proved to be approximately 

tenfold more active than the related 

derivatives 5b and 6 (Figure 3).  

 

 

Scheme 2. Synthesis of amine 7 and allyl sulfide 8 

bearing the -phenyltelluro moiety. 

 

 

Figure 3. Dithiothreitol (DTT) oxidation GPx assay 

for compounds 5b, 6, 7, and 8. Reaction conditions: 

[DTTred]0 = 0.14 M, [H2O2]0 = 0.14 M, [Te-

containing catalyst] = 0.0014 M, CD3OD (0.6 mL). 

The mean ± SD of three separate experiments are 

reported. 

 

 These findings, highlighting the 

importance of the nature of the -substituent 

in affecting the catalytic properties of GPx 

mimics, support the hypothesized central 

role of intramolecular chalcogen bonding 

interactions originated from the  hole in the 

* orbital of the covalent bonds of the Se or 

Te atom. Indeed, these interactions could 

hamper or slow the reactions of tellurium (or 

selenium) oxidation, thiol addition or 

reductive elimination occurring at the 

chalcogen catalytic center.
13,14

 

 

CONCLUSIONS 

In summary, we have achieved the 

synthesis of differently -functionalized 

dialkyl- and aryl-alkyl-selenides and 

tellurides with remarkable thiol peroxidase 

like activity. Organotellurides exhibited 

higher catalytic activity with respect to the 

selenium containing analogues. The nature 

of the groups close to the catalytic 

chalcogen atom has been determined to play 

a crucial role in modulating the catalytic 

properties. Further studies on the synthesis 

and evaluation of novel catalytic 

antioxidants are currently under 

investigation in our laboratories.  
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