1,236 research outputs found
Structural properties and quasiparticule energies of cubic SrO, MgO and SrTiO3
The structural properties and the band structures of the charge-transfer
insulating oxides SrO, MgO and SrTiO3 are computed both within density
functional theory in the local density approximation (LDA) and in the Hedin's
GW scheme for self-energy corrections, by using a model dielectric function,
which approximately includes local field and dynamical effects. The deep
valence states are shifted by the GW method to higher binding energies, in very
good agreement with photoemission spectra. Since in all of these oxides the
direct gaps at high-symmetry points of the Brillouin zone may be very sensitive
to the actual value of the lattice parameter a, already at the LDA level,
self-energy corrections are computed both at the theoretical and the
experimental a. For MgO and SrO, the values of the transition energies between
the valence and the conduction bands are improved by GW corrections, while for
SrTiO3 they are overestimated. The results are discussed in relation to the
importance of local field effects and to the nature of the electronic states in
these insulating oxides.Comment: 3 figures, accepted in J. Phys.: Condens. Matte
Full Sky Study of Diffuse Galactic Emission at Decimeter Wavelengths
A detailed knowledge of the Galactic radio continuum is of high interest for
studies of the dynamics and structure of the Galaxy as well as for the problem
of foreground removal in Cosmic Microwave Background measurements. In this work
we present a full-sky study of the diffuse Galactic emission at frequencies of
few GHz, where synchrotron radiation is by far the dominant component. We
perform a detailed combined analysis of the extended surveys at 408, 1420 and
2326 MHz (by Haslam et al. 1982, Reich 1982, Reich & Reich, 1986 and Jonas et
al. 1998, respectively). Using the technique applied by Schlegel et al. (1998)
to the IRAS data, we produce destriped versions of the three maps. This allows
us to construct a nearly-full-sky map of the spectral index and of the
normalization factor with sub-degree angular resolution. The resulting
distribution of the spectral indices has an average of beta = 2.695 and
dispersion sigma_{beta} = 0.120. This is representative for the Galactic
diffuse synchrotron emission, with only minor effects from free-free emission
and point sources.Comment: 10 pages, 16 jpeg figures, accepted to Astronomy & Astrophysics,
Comments and figure adde
Modelling of micro-milling by considering tool run-out and ploughing regime
The accuracy in micro-milling is strongly affected by the phenomena of tool run-out. The discordance between the tool edge effective and theoretical trajectories increases the tool wear and it negatively affects the quality of the machined surface. The tool run-out should be considered in machining modelling in order to accurately predict how the cutting force changes as the process parameters change. This paper describes the structure of an analytical model which computes the cutting force by considering the tool run-out and the concurrent presence of ploughing- and shearing- dominated cutting regimes. The model was finally calibrated by considering micro-machining on difficult-to-cut material
A strongly interacting gas of two-electron fermions at an orbital Feshbach resonance
We report on the experimental observation of a strongly interacting gas of
ultracold two-electron fermions with orbital degree of freedom and magnetically
tunable interactions. This realization has been enabled by the demonstration of
a novel kind of Feshbach resonance occurring in the scattering of two 173Yb
atoms in different nuclear and electronic states. The strongly interacting
regime at resonance is evidenced by the observation of anisotropic hydrodynamic
expansion of the two-orbital Fermi gas. These results pave the way towards the
realization of new quantum states of matter with strongly correlated fermions
with orbital degree of freedom.Comment: 5 pages, 4 figure
Experimental optimization of process parameters in CuNi18Zn20 micromachining
Ultraprecision micromachining is a technology suitable to fabricate miniaturized and complicated 3-dimensional microstructures and micromechanisms. High geometrical precision and elevated surface finishing are both key requirements in several manufacturing sectors. Electronics, biomedicals, optics and watchmaking industries are some of the fields where micromachining finds applications. In the last years, the integration between product functions, the miniaturization of the features and the increasing of geometrical complexity are trends which are shared by all the cited industrial sectors. These tendencies implicate higher requirements and stricter geometrical and dimensional tolerances in machining. From this perspective, the optimization of the micromachining process parameters assumes a crucial role in order to increase the efficiency and effectiveness of the process. An interesting example is offered by the high-end horology field. The optimization of micro machining is indispensable to achieve excellent surface finishing combined with high precision. The cost-saving objective can be pursued by limiting manual post-finishing and by complying the very strict quality standards directly in micromachining. A micro-machining optimization technique is presented in this a paper. The procedure was applied to manufacturing of main-plates and bridges of a wristwatch movement. Cutting speed, feed rate and depth of cut were varied in an experimental factorial plan in order to investigate their correlation with some fundamental properties of the machined features. The dimensions, the geometry and the surface finishing of holes, pins and pockets were evaluated as results of the micromachining optimization. The identified correlations allow to manufacture a wristwatch movement in conformity with the required technical characteristics and by considering the cost and time constraints
Synthetic dimensions and spin-orbit coupling with an optical clock transition
We demonstrate a novel way of synthesizing spin-orbit interactions in
ultracold quantum gases, based on a single-photon optical clock transition
coupling two long-lived electronic states of two-electron Yb atoms. By
mapping the electronic states onto effective sites along a synthetic
"electronic" dimension, we have engineered synthetic fermionic ladders with
tunable magnetic fluxes. We have detected the spin-orbit coupling with
fiber-link-enhanced clock spectroscopy and directly measured the emergence of
chiral edge currents, probing them as a function of the magnetic field flux.
These results open new directions for the investigation of topological states
of matter with ultracold atomic gases.Comment: Minor changes with respect to v1 (we have corrected some typos, fixed
the use of some mathematical symbols, added one reference
Response of Silicon photo-multipliers to a constant light flux
The response of a Silicon Photomultiplier to a constant illumination has been interpreted in term of Geiger- Mueller avalanche frequency, actually correlated to the photon flux via the photon detection efficiency. The hypothesis has been verified in laboratory tests and applied throughout the development of a device for real-time dosimetry in mammography
Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates
The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidylanthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved Nterminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA
- …