1,236 research outputs found

    Structural properties and quasiparticule energies of cubic SrO, MgO and SrTiO3

    Full text link
    The structural properties and the band structures of the charge-transfer insulating oxides SrO, MgO and SrTiO3 are computed both within density functional theory in the local density approximation (LDA) and in the Hedin's GW scheme for self-energy corrections, by using a model dielectric function, which approximately includes local field and dynamical effects. The deep valence states are shifted by the GW method to higher binding energies, in very good agreement with photoemission spectra. Since in all of these oxides the direct gaps at high-symmetry points of the Brillouin zone may be very sensitive to the actual value of the lattice parameter a, already at the LDA level, self-energy corrections are computed both at the theoretical and the experimental a. For MgO and SrO, the values of the transition energies between the valence and the conduction bands are improved by GW corrections, while for SrTiO3 they are overestimated. The results are discussed in relation to the importance of local field effects and to the nature of the electronic states in these insulating oxides.Comment: 3 figures, accepted in J. Phys.: Condens. Matte

    Full Sky Study of Diffuse Galactic Emission at Decimeter Wavelengths

    Full text link
    A detailed knowledge of the Galactic radio continuum is of high interest for studies of the dynamics and structure of the Galaxy as well as for the problem of foreground removal in Cosmic Microwave Background measurements. In this work we present a full-sky study of the diffuse Galactic emission at frequencies of few GHz, where synchrotron radiation is by far the dominant component. We perform a detailed combined analysis of the extended surveys at 408, 1420 and 2326 MHz (by Haslam et al. 1982, Reich 1982, Reich & Reich, 1986 and Jonas et al. 1998, respectively). Using the technique applied by Schlegel et al. (1998) to the IRAS data, we produce destriped versions of the three maps. This allows us to construct a nearly-full-sky map of the spectral index and of the normalization factor with sub-degree angular resolution. The resulting distribution of the spectral indices has an average of beta = 2.695 and dispersion sigma_{beta} = 0.120. This is representative for the Galactic diffuse synchrotron emission, with only minor effects from free-free emission and point sources.Comment: 10 pages, 16 jpeg figures, accepted to Astronomy & Astrophysics, Comments and figure adde

    Modelling of micro-milling by considering tool run-out and ploughing regime

    Get PDF
    The accuracy in micro-milling is strongly affected by the phenomena of tool run-out. The discordance between the tool edge effective and theoretical trajectories increases the tool wear and it negatively affects the quality of the machined surface. The tool run-out should be considered in machining modelling in order to accurately predict how the cutting force changes as the process parameters change. This paper describes the structure of an analytical model which computes the cutting force by considering the tool run-out and the concurrent presence of ploughing- and shearing- dominated cutting regimes. The model was finally calibrated by considering micro-machining on difficult-to-cut material

    A strongly interacting gas of two-electron fermions at an orbital Feshbach resonance

    Get PDF
    We report on the experimental observation of a strongly interacting gas of ultracold two-electron fermions with orbital degree of freedom and magnetically tunable interactions. This realization has been enabled by the demonstration of a novel kind of Feshbach resonance occurring in the scattering of two 173Yb atoms in different nuclear and electronic states. The strongly interacting regime at resonance is evidenced by the observation of anisotropic hydrodynamic expansion of the two-orbital Fermi gas. These results pave the way towards the realization of new quantum states of matter with strongly correlated fermions with orbital degree of freedom.Comment: 5 pages, 4 figure

    Experimental optimization of process parameters in CuNi18Zn20 micromachining

    Get PDF
    Ultraprecision micromachining is a technology suitable to fabricate miniaturized and complicated 3-dimensional microstructures and micromechanisms. High geometrical precision and elevated surface finishing are both key requirements in several manufacturing sectors. Electronics, biomedicals, optics and watchmaking industries are some of the fields where micromachining finds applications. In the last years, the integration between product functions, the miniaturization of the features and the increasing of geometrical complexity are trends which are shared by all the cited industrial sectors. These tendencies implicate higher requirements and stricter geometrical and dimensional tolerances in machining. From this perspective, the optimization of the micromachining process parameters assumes a crucial role in order to increase the efficiency and effectiveness of the process. An interesting example is offered by the high-end horology field. The optimization of micro machining is indispensable to achieve excellent surface finishing combined with high precision. The cost-saving objective can be pursued by limiting manual post-finishing and by complying the very strict quality standards directly in micromachining. A micro-machining optimization technique is presented in this a paper. The procedure was applied to manufacturing of main-plates and bridges of a wristwatch movement. Cutting speed, feed rate and depth of cut were varied in an experimental factorial plan in order to investigate their correlation with some fundamental properties of the machined features. The dimensions, the geometry and the surface finishing of holes, pins and pockets were evaluated as results of the micromachining optimization. The identified correlations allow to manufacture a wristwatch movement in conformity with the required technical characteristics and by considering the cost and time constraints

    Synthetic dimensions and spin-orbit coupling with an optical clock transition

    Get PDF
    We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron 173^{173}Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.Comment: Minor changes with respect to v1 (we have corrected some typos, fixed the use of some mathematical symbols, added one reference

    Reale e Virtuale nei Musei

    Get PDF

    Response of Silicon photo-multipliers to a constant light flux

    Get PDF
    The response of a Silicon Photomultiplier to a constant illumination has been interpreted in term of Geiger- Mueller avalanche frequency, actually correlated to the photon flux via the photon detection efficiency. The hypothesis has been verified in laboratory tests and applied throughout the development of a device for real-time dosimetry in mammography

    Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates

    Get PDF
    The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidylanthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved Nterminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA
    • …
    corecore