1,339 research outputs found

    Breakthroughs in the Design of Novel Carbon-Based Metal Oxides Nanocomposites for VOCs Gas Sensing

    Get PDF
    Nowadays, the detection of volatile organic compounds (VOCs) at trace levels (down to ppb) is feasible by exploiting ultra-sensitive and highly selective chemoresistors, especially in the field of medical diagnosis. By coupling metal oxide semiconductors (MOS e.g., SnO2, ZnO, WO3, CuO, TiO2 and Fe2O3) with innovative carbon-based materials (graphene, graphene oxide, reduced graphene oxide, single-wall and multi-wall carbon nanotubes), outstanding performances in terms of sensitivity, selectivity, limits of detection, response and recovery times towards specific gaseous targets (such as ethanol, acetone, formaldehyde and aromatic compounds) can be easily achieved. Notably, carbonaceous species, highly interconnected to MOS nanoparticles, enhance the sensor responses by (i) increasing the surface area and the pore content, (ii) favoring the electron migration, the transfer efficiency (spillover effect) and gas diffusion rate, (iii) promoting the active sites concomitantly limiting the nanopowders agglomeration; and (iv) forming nano-heterojunctions. Herein, the aim of the present review is to highlight the above-mentioned hybrid features in order to engineer novel flexible, miniaturized and low working temperature sensors, able to detect specific VOC biomarkers of a human's disease

    Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

    Get PDF
    Background: Tellurite (TeO32-) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO32- into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO32--reducing bacteria can lead to the decontamination of polluted environments and the development of "green-synthesis" methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO32- have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Results: Aerobically grown BCP1 cells showed high tolerance towards TeO32- with a minimal inhibitory concentration (MIC) of 2800μg/mL (11.2mM). TeO32- consumption has been evaluated exposing the BCP1 strain to either 100 or 500μg/mL of K2TeO3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K2TeO3 (conditioned growth). A complete consumption of TeO32- at 100μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO32- at 500μg/mL. However, a greater TeO32- consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO32- reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical-physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500μg/mL of K2TeO3) or the growth conditions (unconditioned or conditioned grown cells). Conclusions:Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO32- during its growth under aerobic conditions. Moreover, compared to unconditioned BCP1 cells, TeO32- conditioned cells showed a higher oxyanion consumption rate (for 100μg/mL of K2TeO3) or to consume greater amount of TeO32- (for 500μg/mL of K2TeO3). TeO32- consumption by BCP1 cells led to the production of intracellular and not aggregated TeNRs embedded in an organic surrounding material. The high resistance of BCP1 to TeO32- along with its ability to produce Te-nanostructures supports the application of this microorganism as a possible eco-friendly nanofactory

    Addition of flow reactions preserving multistationarity and bistability

    Get PDF
    We consider the question whether a chemical reaction network preserves the number and stability of its positive steady states upon inclusion of inflow and outflow reactions. Often a model of a reaction network is presented without inflows and outflows, while in fact some of the species might be degraded or leaked to the environment, or be synthesized or transported into the system. We provide a sufficient and easy-to-check criterion based on the stoichiometry of the reaction network alone and discuss examples from systems biology

    Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

    Get PDF
    Tellurite (TeO32-) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32- into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32-, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assembly and growth that resembled the chemical surfactant-assisted process for NRs synthesis. The TeNRs produced by the BCP1 strain showed an average length (>700 nm) almost doubled compared to those observed in other studies. Further, the biogenic TeNRs displayed a regular single-crystalline structure typically obtained for those chemically synthesized. The chemical-physical characterization of the biogenic TeNRs reflected their thermodynamic stability that is likely derived from amphiphilic biomolecules present in the organic layer surrounding the NRs. Finally, the biogenic TeNRs extract showed good electrical conductivity. Thus, these findings support the suitability of this strain as eco-friendly biocatalyst to produce high quality tellurium-based nanomaterials exploitable for technological purposes

    Node balanced steady states: Unifying and generalizing complex and detailed balanced steady states

    Get PDF
    We introduce a unifying and generalizing framework for complex and detailed balanced steady states in chemical reaction network theory. To this end, we generalize the graph commonly used to represent a reaction network. Specifically, we introduce a graph, called a reaction graph, that has one edge for each reaction but potentially multiple nodes for each complex. A special class of steady states, called node balanced steady states, is naturally associated with such a reaction graph. We show that complex and detailed balanced steady states are special cases of node balanced steady states by choosing appropriate reaction graphs. Further, we show that node balanced steady states have properties analogous to complex balanced steady states, such as uniqueness and asymptotic stability in each stoichiometric compatibility class. Moreover, we associate an integer, called the deficiency, to a reaction graph that gives the number of independent relations in the reaction rate constants that need to be satisfied for a positive node balanced steady state to exist. The set of reaction graphs (modulo isomorphism) is equipped with a partial order that has the complex balanced reaction graph as minimal element. We relate this order to the deficiency and to the set of reaction rate constants for which a positive node balanced steady state exists

    Marble hydrophobicity tuned by Si-based coatings

    Get PDF
    Hydrophobic polymers applied on stone materials increase their durability against undesired weathering processes [1]. The achievement of a certain degree of surface hydrophobicity (reducing the water permeation) constitutes one of the main research focuses [2]. Herein, two commercial Si-based resins (e.g. Alpha\uaeSI30 and Bluesil\uaeBP9710), directly applied on Carrara marble substrates and a silanization process, by using trichloromethylsilane (TCMS), were adopted. Contact angle measurements were carried out to evaluate the hydrophobic features. Hence, since only in the case of TCMS a good hydrophobicity was achieved (\uf071 around 150\ub0), two commercial polysiloxane-based additives (e.g. TegoPhobe 1500N and TegoPhobe 1650) were added respectively to Alpha\uaeSI30 and Bluesil\uaeBP9710, according to their chemical compatibility. These auxiliary substances allowed to decrease the wettability features of marble. Furthermore, since all the investigated coatings could be used as stone materials protective agents, water capillary absorption and vapor permeability tests were performed. Also, in this case, TCMS revealed to be the most performing one among the adopted silane-based resins, thanks to the drastic reduction of absorbed water and the decrease of vapor permeability within the threshold value of 50%. Finally, the coatings stability was evaluated by accelerated ageing tests. References [1] Cappelletti G., Fermo P., Pino F., Pargoletti E., Pecchioni E., Fratini F., Ruffolo S.A., La Russa M.F., On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration, Environ Sci Pollut Res, 22 (2015) 17733\u201317743. [2] Cappelletti G., Fermo P., Camiloni M., Smart hybrid coatings for natural stones conservation, Progress in Organic Coatings 78 (2015) 511\u2013516

    A novel optimized mold release oil-in-water emulsion for polyurethane foams production

    Get PDF
    Release agents are compounds usually sprayed on the molds surface, forming a thin film that can act as a barrier preventing the sticking. Herein, both physical and chemical optimization of a wax-based O/W emulsion for polyurethane (PU) foams is reported. E_N1.8Cet1.2Ac2.5 sample (where N, Cet and Ac stand for the percentages of linear amine, cetyl alcohol and acetic acid), emulsified by the inversion point method, turned out to have the optimal composition, in terms of smaller oil droplets size (by Dynamic Light Scattering analysis and optical measurements), long-term stability (by Abbe refractometer and backscattering tests), good spreading (contact angle and surface tension measurements) and low corrosion phenomena (by potentiodynamic polarization tests, Scanning Electron Microscopy analysis). Principal Component Analysis helped to find the best correlations among all the investigated variables and to have some predictions on the role of the different raw materials in affecting the final stability of the emulsions

    Low temperature/uv-assisted composites as gas sensors for medical applications

    Get PDF
    The sensing of gas molecules is of fundamental importance for environmental monitoring, control of chemical processes, medical applications, and so on [1]. Furthermore, recent success in non-invasive medical diagnostics, based on human breath analysis, is pushing forward the development of extremely sensitive gas sensors for ppb detection of specific analytes (e.g. acetone) in a complex gas mixture [1,2]. In recent years, graphene-based gas sensors have attracted much attention and different structures have been developed showing high sensing performances and room temperature working conditions [2]. However, they still suffer from several problems, which could be overcome by covering the graphene surface with metal oxide semiconductors. Furthermore, studies regarding the detection of Volatile Organic Compounds (VOCs) are still at the beginning [3]. Hence, the present work will be aimed at: i) optimizing the synthetic routes of ad hoc composite VOCs sensing materials (based on graphene oxide/SnO2 hybrids); ii) engineering the gas sensor device; and iii) evaluating the sensing performances at both high and mild temperatures (also exploiting the UV light) towards gaseous ethanol, acetone and ethylbenzene. Starting from pure graphite, graphene oxide (GO) powder was synthesized by adopting the Hummer\u2019s modified method, in which the synthetic route was deeply investigated, and several parameters (such as H2O2 concentration) were modulated. Once optimized this step, SnO2 were grown on its surface by hydrothermal method, varying the starting salt precursor/GO weight ratio between 4 and 32. For comparison, pure commercial and home-made SnO2 were also tested. Several physico-chemical analyses were performed to characterize all the as-prepared nanopowders. Subsequently, a homogeneous film was deposited by spraying technique onto Pt-Interdigitated Electrodes (Pt-IDEs). Then, gaseous ethanol (Figure 1) and acetone were sensed, obtaining very promising results for both pure and hybrid materials at 350\ub0C, and at lower temperatures (150\ub0C to 30\ub0C, by exploiting the UV light) for the graphene-based samples

    Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method

    Get PDF
    A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample

    A comparative analysis on serious adverse events reported for COVID-19 vaccines in adolescents and young adults

    Get PDF
    This study aims to assess the safety profile of COVID-19 vaccines (mRNA and viral vector vaccines) in teenagers and young adults, as compared to Influenza and HPV vaccines, and to early data from Monkeypox vaccination in United States. Methods: We downloaded data from the Vaccine Adverse Event Reporting System (VAERS) and collected the following Serious Adverse Events (SAEs) reported for COVID-19, Influenza, HPV and Monkeypox vaccines: deaths, life-threatening illnesses, disabilities, hospitalizations. We restricted our analysis to the age groups 12–17 and 18–49, and to the periods December 2020 to July 2022 for COVID-19 vaccines, 2010–2019 for Influenza vaccines, 2006–2019 for HPV vaccines, June 1, 2022 to November 15, 2022 for Monkeypox vaccine. Rates were calculated in each age and sex group, based on an estimation of the number of administered doses. Results: Among adolescents the total number of reported SAEs per million doses for, respectively, COVID-19, Influenza and HPV vaccines were 60.73, 2.96, 14.62. Among young adults the reported SAEs rates for, respectively, COVID-19, Influenza, Monkeypox vaccines were 101.91, 5.35, 11.14. Overall, the rates of reported SAEs were significantly higher for COVID-19, resulting in a rate 19.60-fold higher than Influenza vaccines (95% C.I. 18.80–20.44), 4.15-fold higher than HPV vaccines (95% C.I. 3.91–4.41) and 7.89-fold higher than Monkeypox vaccine (95% C.I. 3.95–15.78). Similar trends were observed in teenagers and young adults with higher Relative Risks for male adolescents. Conclusion: The study identified a risk of SAEs following COVID-19 vaccination which was markedly higher compared to Influenza vaccination and substantially higher compared to HPV vaccination, both for teenagers and young adults, with an increased risk for the male adolescents group. Initial, early data for Monkeypox vaccination point to significantly lower rates of reported SAEs compared to those for COVID-19 vaccines. In conclusion these results stress the need of further studies to explore the bases for the above differences and the importance of accurate harm-benefit analyses, especially for adolescent males, to inform the COVID-19 vaccination campaign
    • …
    corecore