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August 7, 2018

Abstract

We introduce a unifying and generalizing framework for complex and detailed balanced
steady states in chemical reaction network theory. To this end, we generalize the graph
commonly used to represent a reaction network. Specifically, we introduce a graph, called
a reaction graph, that has one edge for each reaction but potentially multiple nodes for each
complex. A special class of steady states, called node balanced steady states, is naturally
associated with such a reaction graph. We show that complex and detailed balanced steady
states are special cases of node balanced steady states by choosing appropriate reaction
graphs. Further, we show that node balanced steady states have properties analogous
to complex balanced steady states, such as uniqueness and asymptotical stability in each
stoichiometric compatibility class. Moreover, we associate an integer, called the deficiency,
to a reaction graph that gives the number of independent relations in the reaction rate
constants that need to be satisfied for a positive node balanced steady state to exist.

The set of reaction graphs (modulo isomorphism) is equipped with a partial order that
has the complex balanced reaction graph as minimal element. We relate this order to the
deficiency and to the set of reaction rate constants for which a positive node balanced
steady state exists.

1 Introduction

Complex balanced steady states of a chemical reaction network are perhaps the most well-
described class of steady states in chemical reaction network theory. Horn and Jackson built
a theory for positive complex balanced steady states and showed that they are unique and
asymptotically stable relatively to the linear invariant subspace they belong to [15]. Around
the same time, Feinberg studied a structural network property, called the deficiency, and
derived parameter-independent theorems concerning the existence of complex balanced steady
states, based on the deficiency [5] [§].

The graphical structure of a reaction network also plays an integral part of the present
work. In fact we will not stick to a single graphical representation of a reaction network but to
a collection of graphical representations, and build a theory that extends the classical theory
of complex and detailed balanced steady states. In this theory detailed and complex balanced
steady states arise as particular examples of the same phenomenon.
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The standard graphical representation of a reaction network is a digraph where the nodes
are the complexes of the network and the directed edges are the reactions, as in the example
below with two species. This representation appears so natural that a reaction network might
be defined directly as a digraph with nodes labeled by linear combinations of the species [4]
as follows:

X1+ Xy (1)

/\

7 X1 +2X9

2X.

In addition, we also consider digraphs where the same complex in different reactions might
or might not be represented by the same node. These graphs, called reaction graphs (Defini-
tion , can be obtained from the standard graph by duplication of nodes. As an example,
consider the digraph

X1+ Xo X1+ 2Xs

/\

X1 +2X9

2X, (2)

where the node with label X; 4+ 2X5 is duplicated, such that the digraph is split into two
components. The digraph is obtained by collapsing the two nodes for X; + 2X5, that is,
by reversing the duplication step.

We associate a novel type of steady states, called node balanced steady states with a given
reaction graph (Definition . To set the idea, recall that a complex balanced steady state
is an equilibrium point such that, for any complex y, the sum of the reaction flows out of y
equals the sum of the reaction flows going into y. To illustrate this, consider the digraph
with mass-action kinetics. A complex balanced steady state x = (x1,z2) fulfills

2 2 2 2
K1T1T9 = K3T2, K3Tg = KoT1T5, RoT1T5 + K4T1T5 = K1T1Z2 + K527, (3)

where k; is the reaction rate constant of the i-th reaction.

Analogously, we define a node balanced steady state with respect to a given reaction graph
as a steady state fulfilling equations similar to , derived from the particular reaction graph.
Thus, under mass-action kinetics, a node balanced steady state of the digraph fulfills

2 2 2 2
KR1X1T2 = R3X2, R3T2 = R2T1T9, R2T1Ty9 = R1X1T2, R4T1Ty9 = R5T7. (4)

The equations in can be obtained by adding the last two equations in . A node balanced
steady state of the digraph is therefore in particular complex balanced.

In this context complex balanced steady states are instances of node balanced steady states
for a particular choice of reaction graph. As we will see, detailed balanced steady states are
also node balanced steady states for a specific reaction graph. It is therefore not surprising that
node balanced steady states satisfy properties analogous to complex (and detailed) balanced
steady states. In fact, we show that many classical results carry over to node balanced steady
states and might be defined in terms of properties of reaction graphs, rather than reaction
networks. Particularly, if there is one positive node balanced steady state, then all steady
states are node balanced, and if this is so, there is one positive node balanced steady state
in each stoichiometric compatibility class. Furthermore, this steady state is asymptotically



stable relatively to the class (Theorem . Additionally, we give algebraic conditions on the
reaction rate constants for which node balanced steady states exist with respect to a given
reaction graph (Theorem . There are as many algebraic relations as the deficiency of the
reaction graph. This also generalizes known results for complex balanced steady states [3].

We define a natural partial order on the set of reaction graphs. The standard graphical
representation of a reaction network, as in (|1)), is the unique minimal element. Intuitively, a
reaction graph G is smaller than, or included in, another reaction graph G, G < G’, if G can
be obtained from G’ by collapsing some of the nodes of G’. We will show that if G < G’, then
the deficiency of G is smaller than or equal to that of G’ (Proposition . As an example, the
reaction graph in is smaller than that of , but their deficiencies are the same.

Horn and Jackson showed that conditions for complex and detailed balanced steady states
could be stated in terms of symmetry conditions on the reaction rates [I5]. They also spec-
ulated that perhaps there were other classes of networks for which the steady states fulfilled
similar symmetry conditions. We show that node balanced steady states might indeed be
defined in terms of symmetry conditions, similar to those of Horn and Jackson.

The motivation for this work comes from the desire to build a general unifying framework
for complex and detailed balanced steady states. However, as a consequence of our results, we
are additionally able to state sufficient conditions on the reaction rate constants of a network
such that a part of the network is at steady state whenever the whole system is at steady
state. This is a relevant question in the context of biological modeling, since it is often the
case that only subnetworks of a system are studied. It is therefore natural to wonder whether
the small network is at steady state when the whole network is, and vice versa.

The structure of the paper is as follows. In the next section we introduce reaction networks
and reaction graphs, together with basic properties of reaction graphs. In Section [3] we define
node balanced steady states and discuss their properties. After that, in Section ] and [5], we
discuss the symmetry conditions of Horn and Jackson, and the relationship between a part
and the whole of a reaction network. Finally, in Section [f]} we provide proofs of the main
theorems on node balanced steady states.

2 Reaction networks and reaction graphs

We let RZ, and RZ, denote the nonnegative and positive orthants of R", respectively. If
r € RZ; (RL,), then we say that z is positive (nonnegative). Similarly, Z~o denotes the
nonnegative integers. If vi,..., vy € R™ are vectors, then (vi,...,v;) denotes the linear
subspace generated by the vectors.

2.1 Reaction networks

This section introduces reaction networks and their associated ODE systems [7,[13]. A reaction
network (or simply a network) is a triplet N' = (S,C,R) where S, C < Zgo and R € C xC are
finite sets, called respectively the species, compler and reaction set. We implicitly assume
the sets are numbered and let

S={X1,.... X}, C={y1,..-,ym}, and R ={ry,...,1p},

such that n, m, and p are their respective cardinalities. Hence Zgo ~ 72, and a complex can
be identified with a linear combination of species y = (A1,..., ) = 2 \iX;. We further
assume that (y,y) ¢ R, any y € C is in at least one reaction and any S € S is in at least one
complex. In that case, C and S can be found from R, and N is said to be generated from R.



An element r = (y,y’) of R is written as r: y — ¢ or just y — ¢/. A reaction y — ¢’ € R is
reversible if iy — y € R as well. If this is not the case, then the reaction is irreversible. A pair
of reactions y — v’ and 3y’ — y is called a reversible reaction pair and denoted by y — v/.
A reaction network is reversible if all reactions of the network are reversible.

The stoichiometric matriz N € R™*P is the matrix with j-th column N; = y' — y where
rj:y — y'. The columns of N generate the so-called stoichiometric subspace S of R". We
define s = rank(N) = dim(S).

We let x; denote the concentration of species X;. A kinetics v for a reaction network is a
C!-function from RZ to RZ ) such that v(RZ%;) = RZ . The j-th coordinate, v}, is called the

rate function of ;. The main example of kinetics is mass-action kinetics, where
n
Uj(x)zlﬁ?jajy:,‘ijn.%?i, for rjry—y, and y=(\i,.... M), (5)
i=1

and k; > 0 denotes the reaction rate constant of r;. By convention, 0° = 1. Whenever the
numbering of R is irrelevant, we write vy_,,» and r,_,,, instead of v; and x;, respectively.
Given a kinetics v, the evolution of the species concentrations over time is modeled by a

system of ODEs,

d
d—u: = No(z), z € RY,. (6)

For reasonable kinetics, including mass-action kinetics, the solution of @ is in the positive
(nonnegative) orthant for all positive times in the interval of definition, if the initial condition
is [20]. Furthermore, the solution is confined to one of the nonnegative polytopes known as
the stoichiometric compatibility classes

where xg € R>¢ is the initial condition.
The steady states of (6]) are the nonnegative solutions to the equation Nv(z) = 0. For
mass-action kinetics, this equation becomes:

Dokal(y' —y) =0,  zeRL, (7)

T y—y
Example 1 (part A). We use a variant of a reaction network in [15, equation (7.3)] and [9,

Example 2.3] as a ‘running’ example throughout the paper. The set R of reactions consists of

r1: 3X1 - X1 +2X, ro: X1 +2X9 — 3Xo r3: 3X9 > 2X7 + Xo
T4 2X1 + X9 — 3X4 r5: 3X1 — 3X5 T6: 3X2—>3X1,

with C = {3X1, X1 +2X2,3X2,2X; + X2} and S = {X, X3}. There is one reversible reaction
pair, r5 and rg, and four irreversible reactions. The stoichiometric matrix is

-2 -1 2 -1 -3 3
N:(z 1 -2 1 3—3)’

with rank s = 1. Thus, the stoichiometric compatibility classes (zg + ((—1,1))) N RZ are
one-dimensional. Mass-action kinetics implies v(x) = (K123, Kow173, K313, KaTiT0, K53, KeT3).



2.2 Reaction graphs

In this subsection we introduce novel graphical representations of a reaction network, the main
object of this work.

Definition 1. Let N' = (S,C, R) be a reaction network. A reaction graph associated with N
is a node labeled digraph G = (Vg, Eg,Y) with no isolated nodes, where Vg = {1,...,mg}
and

(i) Y is a surjective labeling of the node set with values in C:
Y .
Vo — C, such that i— Y,
(ii) Y induces a bijection R between Eg and R as follows:
E¢ R,  suchthat i—j — Ri;=Y—Y]

We say that a reaction graph is weakly reversible if all connected components of G are strongly
connected, that is, there exists a directed path between two nodes, whenever there is a directed
path between the nodes in opposite direction.

In what follows, we generically denote a complex of a network as y; and a label of a node
in a reaction graph as Y;. For a reaction graph G’, we denote objects related to it with /. Note
that two nodes can have the same label in C, but each reaction of A corresponds to exactly one
edge of G. For two reaction graphs G, G’ of N, the bijections R, R’ induce a correspondence
R~' o R' between E and Eg: An edge i’ — j' of G' corresponds to the edge i — j of G, if
the two edges map to the same reaction of N.

Any permutation of the node set Vi of a reaction graph gives an identical reaction graph,
except for the numbering of the nodes. In the Introduction, ‘reaction graph’ was used in the
sense of ‘up to a numbering of the nodes’ without mentioning it explicitly.

Example 1 (part B). The following digraph and labeling function

1 2
‘ \ | Y1 =3Xy, Yo = X + 2Xo,
}/:3 :3X2; }/4 :2X1+X27

4 «— 3

define a reaction graph for the reaction network in Example This reaction graph is
weakly reversible. In general we draw the node labels next to the nodes and add labels (r;)
to the edges, as in the digraph G of Figure [II The edge labels are redundant information,
because the bijection R of a reaction graph (Vg, Eg,Y) is explicitly determined. However, it
makes comparison between reaction graphs easier.

Figure (1| shows seven reaction graphs for the reaction network in Example that
will be used to illustrate results. The reaction graphs except for G5, Gg and G7 are weakly
reversible.

The following definition names some special reaction graphs. Recall that we assume that
numberings of the reaction and complex sets are given.



1,3X: s 2 X 42X,

1

1.,3X1 —_—> 27X1+2X2

:

4,2X1+ Xz < 3,3X0

4,2X1 + Xy T 3,3Xy ——— 5,3X4

1,3X; — s 2 X +2X,
1,3X] — 1 2.X)+2X,

T4 73

5,3X7 «——— 4.2X7+ X9 «—— 3,3Xqo

7,3X,
% s
1,2, + X; 13X~ 2.X) 42X, %3X1
3, X, +2Xy 25 43X,
5,3X 2 > 6,2X1 + Xs
1
1,37 —— 2, X7 +2X, 7,2X1 + X _T 8,3X 10,3X>5
5,3X r ,
1 3,3, 1,37 —+> 2,X; 42X, 9,3X7 11,3Xy
nﬂ & 8,X1 42Xy — 43X J T
, Ts5 Te
53Xy ——> 6,2X1+ Xo
4,2X7 + Xo o 6,3X2 7,2X1 4+ Xo _Ta 8,3X, 10,3X, 12,3X5

Figure 1: Reaction graphs for the network in Example Reaction labels r; are added

for convenience.

Definition 2. Let V' = (S,C, R) be a reaction network.

e A complex reaction graph G is a reaction graph with m nodes such that the labeling Y
is a bijection between Viz and C. The canonical complex reaction graph fulfills

Y, =y, j=1,...,m.

e A detailed reaction graph is a reaction graph with one connected component per re-
versible reaction pair and one per irreversible reaction.

e A split reaction graph is a reaction graph with 2p nodes and one connected component
per reaction. The canonical split reaction graph fulfills

Yoj—1 =y, Yaj =9/, if rjry—y, forallj=1,...,p.

e We say that N is weakly reversible if any complex reaction graph is weakly reversible.



Example 1 (part C). Consider the reaction graphs in Figure I} The reaction graph G is a
complex reaction graph, Gg is a detailed reaction graph and G is a split reaction graph (in
fact, the canonical split reaction graph). The network is weakly reversible.

Intuitively, any reaction graph G is obtained by collapsing or joining nodes of a split
reaction graph with the same labels. Oppositely, we can view a reaction graph as a graph
where some nodes of a complex reaction graph are duplicated. Only nodes that are source or
target nodes of multiple edges can be duplicated. For example, if node 1 of the reaction graph
G1 in Figure[I]is duplicated, then the reaction graphs G4 and G5 are obtained. Collapsing the
node pairs (9,11), and (10, 12) of the split reaction graph G7 yields Gg. Node duplication does
not determine the reaction graph uniquely. In contrast, by collapsing node pairs the reaction
graph is uniquely determined. This is formalized in the next subsection.

2.3 Morphisms of reaction graphs and a partial order

In this subsection we consider the family of reaction graphs associated with a reaction network
N and show that the set of equivalence classes of reaction graphs forms a lattice.

Definition 3. Let G, G’ be two reaction graphs associated with a reaction network N and
let Y,Y’ be their labeling functions, respectively. A morphism of reaction graphs from G to
G’ is a map between the node sets

v: Vo — Vo,

such that
(i) p(i) — ¢(j) is an edge of G’ if i — j is an edge of G.
(ii) Yé(i) =Y, foralli=1,...,mg (equivalently, Y = Y’ 0 ).

An isomorphism of reaction graphs is a morphism that has an inverse morphism. It is simply
a permutation of the nodes of the graph.

By definition, a morphism of reaction graphs is in particular a digraph morphism. Iso-
morphism of reaction graphs is an equivalence relation, which allows us to speak about the
equivalence class [G] of a reaction graph G. In this sense, two reaction graphs are equivalent if
they are isomorphic. The complex reaction graphs form an equivalence class G. and the split
reaction graphs form another class G, with representatives given by the canonical reaction
graphs. In the same way, the detailed reaction graphs also form an equivalence class. An
equivalence class of reaction graphs can be depicted by omitting the numbering of the node
set, as we did in and in the Introduction. We will use this representation in some
examples to introduce an equivalence class without specifying a representative.

Lemma 1. Any morphism of reaction graphs ¢: Vg — Vg is surjective.

Proof. Definition (3| implies that R;—; = Y; — Y; = Y(;(Z.) — Yé(j) = R:o(i)—mp(j)' Therefore,
(R~ Yo R(i — j) = ¢(i) — ¢(j). Since (R')~! o R is a bijection between Eg and Eg and
reaction graphs have no isolated nodes, all nodes of G’ are in the image of ¢, that is, ¢ is
surjective. 0

Let Gsp = (Vsp, Esp, Ysp) denote the canonical split reaction graph.



Definition 4. A partition P of Vi, = {1,...,2p} is called admissible if
Yipi =Ysp; foralli,jin the same subset P e P.

Given an admissible partition P = { P}, ..., P,}, the associated reaction graph Gp = (Vp, Ep, Yp)
is defined as

VP = {1’ s 7(]}, (SO, mGgp = Q)a
E’/)Z{k:—>k‘/|i—>jEEGSp,i€Pk,j€Pk/},
(Yp)k = )/sp,i if 1€ Pk.

Note that the associated reaction graph depends on the numbering of the sets in the
partition, which we implicitly give when writing P = {Py,...,P;}. The map Yp is well
defined because the partition is admissible. Moreover, Ep is in one-to-one correspondence
with R because an edge k — k' arises from a unique choice of 7, 7. Otherwise, there would be
two edges in Gy, corresponding to the same reaction, since the partition is admissible.

Lemma 2. (i) For any reaction graph G there ezists an admissible partition P = {Py, ..., Py}
with ¢ = mqg elements, such that G = Gp.

(it) Two reaction graphs G,G" with respective admissible partitions P = {P1,...,P;}, P' =
{P],... ,Pq’,}, as in (i), are equivalent if and only if P = P’.

Proof. (i) We construct the partition P, such that there is one set Py for each node k € V.
For each edge i — j' of Gyp, let i — j be the edge of G corresponding to the same reaction.
Then by definition ¢’ € P; and j’ € P;. Each node of Gy, is the source or target of exactly
one edge. Therefore, all nodes are assigned a unique set Py, and each set Pi has at least one
element. Thus P, ..., Py, is a numbered partition of {1,...,2p}, which further is admissible.
It is straightforward to check that G = Gp.

(ii) Consider admissible partitions P, P’ and numberings of the subsets of the partitions
such that G = Gp and G’ = Gpr. The isomorphism between G and G’ translates into a
permutation of the numbering of the subsets of the partitions, and thus P = P’. O

We conclude from Lemma [2] that an equivalence class of reaction graphs can be identified
with an admissible partition P of the set {1,...,2p}. This class is denoted by Gp. Using this,
we can define a partial order on the set of equivalence classes.

Definition 5. Let P and P’ be two admissible partitions. We say that P is a refinement of
P’, and write P < P, if for each P € P there exists P’ € P’ such that P < P'.
Given two equivalence classes Gp, Gps, we define Gpr < Gp if P < P'.

If [G'] < [G], then we write G’ < G for convenience. We say that G’ is included in G, or
that G includes G’. Note that the objects are reversed in [G'] < [G] and P < P'.

The admissible partition for G, has 2p subset each with one element: {i}, fori =1,...,2p.
The admissible partition P, defining G, has m elements, one for each complex:

Pc,yz{je{l,...,Qp}|Y8p7j=y}, yeC.

Any admissible partition is a refinement of P., and hence an admissible partition is a union
of partitions, one for each subset of P.. Further, the partition for the split reaction graphs is
a refinement of any other admissible partition. Hence, for any reaction graph G, it holds

Ge < [G] < Gsp- (8)



The set of admissible partitions inherits a lattice structure from the lattice structure of
the set of partitions in general. Recall that a lattice is a set with a partial order such that
any pair of elements has an infimum and a supremum [I2]. An admissible partition P defines

an equivalence relation over {1,...,2p} by letting ¢ ~p j if i,j € P for some P € P. The
union P v P’ is the partition such that ¢ ~p,p j if and only if there exists a sequence
1 = 40,01,---,1k_1,% = j such that either iy_; ~p iy or iy_1 ~pr iy for all £ = 1,... k.

Similarly, the intersection P A P’ is the partition such that i ~p,ps j if and only if i ~p j
and 7 ~pr 7. It is straightforward to show that P v P’ and P A P’ are both admissible.

Further, if P < P’, then there exists a (possibly non-unique) sequence of admissible par-
titions P = Py < P; < --- < P, = P/, such that at each step precisely two subsets of the
partition are joined (cf. [12, Lemma 1 and Lemma 403]). This constitutes the proof of the
following proposition.

Proposition 1. (i) The set of equivalence classes of reaction graphs with the partial order
< is a finite lattice with mazimal element Gs, and minimal element G.. Further, the
mfimum and supremum of two classes Gp, Gpr are respectively

gp A Gpr = Gpyupr, gp v Gpr = Gpapr.

(i1) Let G,G" be reaction graphs associated with a reaction network. Assume k = mg —
me > 0. Then G < G if and only if there exists a sequence of k — 1 reaction graphs
G'=Gy<G| < <Gp_1 <G =G such that

mg, = mqg, , +1, i=1,...,k.

Note that given two weakly reversible reaction graphs G, G, their infimum G A G’ is also
weakly reversible (cf. Proposition[2[iv)), but this is not necessarily the case for the supremum
G v G’ as the next example will show.

Example 1 (part D). Table 1| shows the admissible partitions for the reaction graphs in

Figure [1] Since Ps is a refinement of Py, we have [G4] < [G5]. Further, P2 A Py = Ps and

Py v Py = P1. It follows that [G2] A [G4] = Gp,vp, is the equivalence class of the complex

reaction graphs class with representative G, and similarly [G2|v[G4] = Gp, rp, = [G5]. While

G2 and G4 are weakly reversible, G5 is not. Following Proposition (ii), the inclusion G < G

can be broken down into two sequences of inclusions G; < G3 < G5 and G; < G, < G3, with
h=Gpand P = {{1,8,9,11},{2,3}, {4,12}, {6, 7}, {5, 10} }.

We conclude the section with an alternative description of the partial order.
Lemma 3. G' < G if and only if there exists a morphism of reaction graphs ¢: Vg — V.

Proof. Let P = {P,..., Py,} and P’ = {P[,..., P,  } be the admissible partitions such that
G = Gp and G' = Gpr. Since G' < G, we have P < P’. For each i € Vg, let (i) € V{, be the
index such that P;  P,;). Since the partitions are admissible, then

}/72 = (YP)Z = }/Sp,k = (Y’Pl)w(z) = Y(,;(Z)’ for all k € B - PQ/O(’L)

Further, if i — j € Eq = Ep, then by definition there exist ¢’ € P; and j' € P; such that ¢/ — j’
is an edge of Gp. Since also 7’ € P("O(Z.) and j' € P;(j), it follows that ¢(i) — ¢(j) € Epr = Egr.
By Definition [3] ¢ is a morphism of reaction graphs.

For the reverse implication, let i € V5 and k € P;. Since ¢ is a morphism and G = Gp it
holfis (Yp1)piy = (Yp)i = Ypi. Hence k € PS/D(Z.). This shows P; < P(;(i) and thus P < P’ as
desired. O



t P; such that G; = Gp, Ye?
{ {1,8,9,11}, {2,3}, {4,5,10,12}, {6,7} }

{ {1,11}, {2,3}, {4,5,10,12}, {6,7},{8,9} }

{ {111}, {2,3}, {4,12}, {6,7},{8,9},{5,10} }

{ {1,8}, {2,3}, {4,5,10,12}, {6,7},{9,11} }

{ {1}, {2,3}, {4,5,10,12}, {6,7},{8},{9}.{11} }

{ {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9,11}, {10,12} }

{ {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12} }

N[O W
Cu k[t W | W Ww|N

Table 1: Partitions defining the reaction graphs in Figure [I| and their deficiencies.

The morphism ¢ associated with an inclusion G’ < G identifies the nodes of G that are
joined to form G’, or, in terms of partitions, the subsets of the partition defining G that are
joined to form the partition defining G'. By Lemma [3| two reaction graphs G and G’ are
isomorphic if and only if G < G’ and G’ < G, which is consistent with Lemma [2|

Example 1 (part E). For the inclusion G4 < G5 in Figure |1} the map ¢: Vg, — Vg, is
p(1) =¢0) =1, ¢(2)=2, ¢@3)=3, ¢) =4, »(6)=p() =5

2.4 Incidence matrix and weak reversibility

Given a reaction graph G with labeling Y, we consider the matrix Y € R"*™¢  called the
labeling matriz, with j-th column being the vector Y; (the same notation is used as for the
labeling function, since both objects convey the same information).

We define a numbering on the edge set Eg by means of the bijection R and the numbering
of R. The incidence matriz Cg of the reaction graph G is the mg X p matrix with nonzero
entries defined by (Cq)r,; = —1, (Cg)r,; = 1, if the j-th edge is k1 — ko. Each column of
C¢a has only two non-zero entries and the column sums are zero. The rank of the incidence
matrix is mg — {g, where (g is the number of connected components of G [I, Prop. 4.3].

Proposition 2. Let G be a reaction graph associated with a reaction network N'. Then, the
following holds:

(i) N =YCq.

(i) The kernel of Cq contains a positive vector if and only if G is weakly reversible.
Assume G, G’ are two reaction graphs associated with N such that G' < G. Then, we have
(iii) There exists an (mg x mg)-matriz B such that Cqr = BCg.

(iv) If G is weakly reversible, then so is G'.

Proof. (i) The j-th column of N is y/ —y if rj: y — ¢/. If ko — ki is the j-th edge of G, then
the j-th column of Y Cg is the vector Yy, — Y,. Since r; = Ry, ,, we have Y, = y and
Yi, = o/, proving (i).

10



(ii) This is well known. For instance, use that the elementary cycles are the minimal
generators of the polyhedral cone ker(Cg) n R [11, Prop. 4] and that a digraph is weakly
reversible if and only if each edge is part of an elementary cycle. See also [10, Remark 6.1.1]
or [18, Lemma 3.3].

(iif) Let Vi 2 Vi be the surjective map from Lemma Il Let B € R™& ™G such that the
(p(i),4)-th entry is 1, for i = 1,...,mq, and the rest of the entries are zero. If the j-th edge
of G is k1 — ko, then the nonzero entries of the j-th column of BCq are —1 at row (k1) and
1 at row p(k2). Thus BCq = Cg.

(iv) Follows from (ii) and (iii). O

2.5 Deficiency

The deficiency of a reaction network is an important characteristic in the study of steady
states and their properties [2] [3 [5, 8, [19]. Here, we extend the classical definition of deficiency
to an arbitrary reaction graph.

Definition 6. Let G be a reaction graph associated with a reaction network A'. The deficiency
of G is the number
o = mg — g — s,

where m¢ is the number of nodes of G, ¢z is the number of connected components of G and
s the rank of the stoichiometric subspace of N.

The deficiency of a reaction graph depends only on the equivalence class of the reaction
graph. Hence it makes sense to talk about the deficiency of an equivalence class G, which we
denote by dg. We have d;g) = dg. In particular, we refer to the deficiency of N as the the
deficiency of the equivalence class G, of the complex reaction graphs (in accordance with [5]).

The deficiencies of the reaction graphs in Figure [1| are given in Table [I} using that s = 1.

Example 2. A split reaction graph has 2p nodes and p connected components. Thus the
deficiency of the split equivalence class Gg, is dg,, =2p —p — s =p —s.

Given a reversible network with p = 2¢ reactions, then any detailed reaction graph has p
nodes and ¢ connected components. Thus the deficiency of the detailed equivalence class is

d=p—q—s=gq—s.

The deficiency of a reaction graph is a non-negative number, as we show below. For a

given order G, ..., Gy, of the connected components of G, define the linear map Vg by

Ug: R™C R e with \I/G(;U) = | Yz, Z Liyeons Z zi |, 9)
i€Gy 1€Gy

where Y defines the first n coordinates of U (x). The following proposition is well known in
the context of complex balanced steady states [3|, [15]. We will use the result in Section .

Proposition 3. For a reaction graph G with labeling function Y, the following equalities hold:
ker Vg = kerY mim Cg, dg = dim(ker Y nim Cg) = dim ker Ug.

Proof. To prove the first equality, let e; be the i-th unit vector of R™¢. For all j € {1,...,4c},
we have w; := Zz‘eGj e; € (imCg)*t. This gives £g linearly independent vectors in (im Cg)*.
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Using that the rank of C¢ is mg—{¢, we conclude that wy, . .., wy, form a basis of (im Co)t. Tt
follows that z € im C¢ if and only if w;-o = 0 for all j € {1,...,{g}. Further, w; -« = ZieGj ;.
Using this, we have x € kerY nimCg if and only if Yo = 0 and w; - * = 0, which is
equivalent to U (x) = 0. This concludes the proof of the first equality.
Consider now the linear map v: ker N — R™¢ defined by w — Cgw on ker N € RP. Since
ker C¢; € ker N by Proposition [2[i), we have ker ¢ = ker C;. On the other hand,

imy = {Cow | we RP, Nw = 0} = {Cqw | we RP, Y Cgw = 0} = ker Y nim Cg.

By the first isomorphism theorem, ker N/ker Cq¢ =~ kerY n imCg. Using that ker Co has
dimension p — mqg + g, we have

dim(kerY nim Cg) = dimker N —dimkerCqg =p—s— (p —mg + g) = mg — g — s = d¢
which concludes the proof of the second equality. O

The deficiency behaves surprisingly nice in connection with inclusion of reaction graphs.
In particular, it is possible to iteratively compute the deficiency of any reaction graph from
the split reaction graph. This will be further exploited in the coming section in relation to
node balanced steady states.

Proposition 4. Assume G' < G for two reaction graphs associated with a reaction network
N and let p: Vg — Vi be the morphism defining the inclusion, cf. Lemma[3

(i) Assume that mg = me + 1 and let iy,i2 be the only two nodes of G such that v(i1) =
©(iz). If i1,12 belong to the same connected component of G, then dq = dg — 1 and
there is an undirected cycle through ¢(i1) = ¢(i2) in G', which is not in G. Otherwise,
5G/ = 5@.

(7,7,) Sy < dq.

(i1i) If A = 6g — dcr > 0, then there exists a sequence of A + 1 reaction graphs G' = Gy <
Gi1 <+ <Ga_1 X Ga =G such that

5Gi:6G¢71+17 i=1,..., A

Proof. (i) Using that mg = m¢ + 1, we have that
5G_6G’ :mG/—l—l—ﬁg—s—(mG/—éG/—s) IZG/—€G+1.

Let GG1, G2 be the connected components of G containing 1, ¢2 respectively. Outside G; and
G2, the morphism ¢ is a permutation of the nodes, while G; and Go are mapped to the
connected component of G’ containing ¢(i1) = ¢(i2). Thus, if G1 = G, lg = {g, while if
G1 # Go, then £ = £ — 1. This gives the stated relation between d¢ and d¢r.

Furthermore, consider an undirected path without repeated nodes between i; and is in G.
The image by ¢ of this path is a path of G’, with end points ¢(i1) = ¢(i2). Thus there is an
undirected cycle in G’. There are no repeated nodes since ¢ is one-to-one on Vg\{i1, i2}.

(ii) and (iii) follow from (i) and Proposition [1] O

The above results have some interesting consequences. Assume G’ < G. If G,G’ have
exactly the same cycles (given the correspondence of edges between the two graphs), then
their deficiency is the same by Proposition[di). Further, the deficiency of G’ can be computed
iteratively from that of G by joining pairs of nodes, one at a time, and checking whether two
connected components merge or not.
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Example 1 (part F). Consider the inclusion G; < G2 < G3 and the deficiencies given in
Table The inclusion G < G3 is obtained by joining the nodes 3,6, which changes the
number of connected components. Thus, dg, = dg, = 3. For the inclusion Gi < G2 one joins
the nodes 1,5, which does not alter the number of connected components and a new cycle is
created in G, namely 1 == 3. The deficiency is reduced by one, hence g, = dg, — 1 = 2.

3 Node balanced steady states

In this section we introduce node balanced steady states for a given reaction graph, and show
that complex and detailed balanced steady states, two well-studied classes of steady states,
are examples of node balanced steady states. We use the partial order on the equivalence
classes of reaction graphs to deduce further properties of node balanced steady states.

3.1 Definition and first properties

Definition 7. Let A be a reaction network, G = (Viz, Eg,Y) an associated reaction graph
and v a kinetics. A node balanced steady state of N with respect to G is a solution to the
equation

Cgu(z) =0, x € RY,.

Equivalently, * € RY is a node balanced steady state if for all nodes i of Cg it holds

Yo wey ) = D vy, (10)

jeVgli—jeEq JeVali—ieEq
where vy, .y, is the rate function of the reaction Y; — Y.

By Proposition (i), any node balanced steady state is also a steady state of the network.
Further, a direct consequence of Proposition [2|is the following result.

Proposition 5. Let N be a reaction network with a kinetics v and let G' < G be two associated
reaction graphs.

(i) If there exists a positive node balanced steady state with respect to G, then G is weakly
reversible.

(i) Any node balanced steady state of N with respect to G is also a node balanced steady
state with respect to G'.

By Proposition (ii), a node balanced steady state with respect to G is a node balanced
steady state with respect to any reaction graph equivalent to G. Thus, we may equivalently
refer to a node balance steady state with respect to an equivalence class of reaction graphs
or to a particular reaction graph in that class. Further, a complex balanced steady state is a
node balanced steady state with respect to the equivalence class of complex reaction graphs,
and similarly, a detailed balanced steady state is a node balanced steady state with respect to
the equivalence class of detailed reaction graphs.

By Proposition (ii) and equation , any node balanced steady state of N is also a
complex balanced steady state and we recover the well-known fact that detailed balanced
steady states are complex balanced steady states. In fact, more is true. We will show in
Corollary 1| that if G’ < G and d¢ = d¢g, then the reverse implication of Proposition (ii)
holds for mass-action kinetics. That is, both reaction graphs give rise to the same set of node
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balanced steady states, and there exist node balanced steady states for the same set of reaction
rate constants.

Since a split reaction graph is never weakly reversible, there cannot be positive node
balanced steady states with respect to this graph. Similarly, if a reaction network contains
irreversible reactions, then there are no positive detailed balanced steady states with respect
to the detailed reaction graph.

Example 1 (part G). Consider the reaction graphs Go,Gs in Figure (1| and mass-action ki-
netics. Focusing on the node 3 with label 3X5, a positive node balanced steady state with
respect to G fulfils

KoT1T3 + KsTs = KeTs + K3Ts. (11)

For nodes 3 and 6, both with label 3X5, a positive node balanced steady state with respect
to G5 fulfills
Ko1T3 = KT, and K5TS = K3xs. (12)

If these equations hold, then so does . The equations for the other nodes are the same for
both G5 and G3. Therefore a node balanced steady state with respect to (G3 is also a node
balanced steady state with respect to G2. We knew this already from Proposition [5] since
G9 < (3. The reverse statement is also true in this case. It follows from the fact that the
deficiencies of the two reaction graphs agree. The proof will be given below.

3.2 Main results

In this section we only consider reaction networks with mass-action kinetics and weakly re-
versible reaction graphs. Given a network A/, an associated reaction graph G and a vector
k€ RY | we say that (N, G, k) is node balanced if there exists a positive node balanced steady
state of N/ with respect to G for mass-action kinetics with reaction rate constants x. The
proofs of the three theorems below are given in Section [6]

The first theorem is akin to Theorem 6A of [15].

Theorem 1 (Uniqueness and asymptotic stability). Assume N is a reaction network
with mass-action kinetics with reaction rate constants k € R ;. and let G be a weakly reversible
reaction graph. If (N, G, k) is node balanced, then any positive steady state of N is node
balanced with respect to G. Furthermore, there is one such steady state in each stoichiometric

compatibility class and it is locally asymptotically stable relatively to the class.

The next main result tells us that there are dg equations in x € RY, that determine
whether (N, G, k) is node balanced or not. The link between deficiency and the existence of
complex balanced steady states was first explored by Horn and Feinberg [6], [14] (see also [§],
and [4, O] concerning detailed balancing). We follow the approach of [3] for complex balanced
steady states, which applies to general reaction graphs.

For a node i € Vg, let ©g,; be the set of spanning trees of the connected component 4
belongs to, rooted at i (that is, 7 is the only node with no outgoing edge). Given such a tree
7, let K™ be the product of the reaction rate constants corresponding to the edges of 7. Define

Kgi= Y, & and  Kg=(Kai,...,Kgmg). (13)

TE@GJ‘

The following theorem is a consequence of [3, Theorem 9], adapted to our setting. Recall
that the kernel of the map ¥ given in @D has dimension ég (Proposition .
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Theorem 2 (Existence of node balanced steady states). Let N be a reaction network,

K € RI;O, and G an associated weakly reversible reaction graph. Let uy,...,us., € ZC be a

basis of ker Wg. Then the following holds.

G
(i) (N,G, k) is node balanced if and only if

ma
(Kg)" = HKZ”J =1, forall i=1,... 0.
j=1

(ii) x € RZ, is a node balanced steady state of N with respect to G if and only if

Kgio¥i — Kg o1 =0 forall (i,j) € Eg.

By Theorem [2[(i), there are d¢ relations in the reaction rate constants for which (N, G, k)
is node balanced. In fact, more is true. As proven in [3] for complex balanced steady states,
these dg equations imply that the set of reaction rate constants k € RZO for which a positive
node balanced steady state exists forms a positive variety of codimension dg in RY . The
conditions given in (i) for complex balanced or detailed balanced steady states are equivalent
to the conditions given in Proposition 1 and 4 of [4].

The next result tells us how to obtain the relations in Theorem (1) from the relations for
complex balanced steady states.

Theorem 3 (Node balancing and inclusion of reaction graphs). Let G',G be two
weakly reversible reaction graphs such that G' < G and mg = mq + 1. Further, consider the
associated morphism p: G — G’ in Lemmal[d, and let i1,i2 be the only pair of nodes of G such
that p(i1) = (i) = k with k € Vr. Let k€ RE .

(i) If i1,i2 do not belong to the same connected component of G, then (N,G,k) is node
balanced if and only if (N, G’ k) is.

(i1) If i1,i2 belong to the same connected component of G, then (N, G, k) is node balanced if
and only if (N, G’, k) is node balanced and further Kq i, = Ka.i, -

We obtain the following corollary.

Corollary 1. Let G' < G be two weakly reversible reaction graphs associated with a reaction
network. Assume mass-action kinetics with k € R .

(i) If 6¢ = d¢r, then x* is a positive node balanced steady state with respect to G' if and
only if it is a positive node balanced steady state with respect to G.

(ii) Any set of d¢gr equations in k for the existence of positive node balanced steady states
with respect to G' (as in Theorem @) can be extended to a set of equations in k for the
existence of positive node balanced steady states with respect to G by adding 6 — dcv
equations.

Proof. (i) The reverse implication is Proposition [5{(ii). If z* is a positive node balanced steady
state with respect to G’, then by Theorem (1) and Proposition (i), (N, G, k) is also node
balanced. By Theorem [I] this means that all positive steady states of A/ with reaction rate
constants k are node balanced with respect to G, thus in particular x* is.

(ii) It follows from Theorem [3|(ii) and Proposition [A]iii). O
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As a consequence of Corollary || and Proposition (i), we recover the following well-known
result relating complex and detailed balanced steady states [4, [0]. Assume the network is
reversible. If a complex reaction graph has no simple cycles (that is, with no repeated nodes)
other than those given by pairs of reversible reactions, then a steady state is complex balanced
if and only if it is detailed balanced.

By letting G’ be a complex reaction graph in Corollary (ii), we conclude that the equations
for the existence of positive complex balanced steady states can be extended to equations for
the existence of positive node balanced steady states for any weakly reversible reaction graph.
The extra conditions, obtained by applying Theorem (ii) iteratively in conjunction with
Proposition [4] generalize the so-called cycle conditions [9], or formal balancing conditions [4],
that relate conditions for the existence of complex and detailed balancing steady states.

If ¢ = dg but neither G < G’ nor G’ < @G, all possibilities might occur. The sets of
reaction rate constants k € RY | for which (N, G, k) and (N, G, k) are node balanced can be
disjoint, have a proper intersection or coincide. Instances of the first two cases are given in
Example and Example [4| below. For what concerns the latter, we have the following
corollary, which is a consequence of Theorem [3]

Corollary 2. Let G,G" be two weakly reversible reaction graphs with the same deficiency
0c = 0¢v. If either of the following conditions are fulfilled,

(i) dc = dicqafen-
(ii) [G] v [G'] is weakly reversible and dg = djcv (1),
then (N, G, k) is node balanced if and only if (N, G, k) is.

Example 3. Consider a reaction network with reactions X7 —— X3, Xo —— X3 and
X3 == X4, and the following associated equivalence classes of reaction graphs (shown without
the numbering of the nodes).

Gi: X1 Xo X3 Xy
92: Xl :XQ X2:X3:X4
93: X1 :X2:X3 X3\:‘X4

94: X1 :‘XQ X2 :‘Xg, X3 :‘X4

Neither Go < G3 nor Gs < Go. Moreover, Go A G3 = G1, Go v G3 = G4, and the reaction graphs
in these classes have all the same deficiency. Hence, by Corollary [2] the sets of reaction rate
constants for which A/ admits positive node balanced steady states with respect to any of the
above equivalence classes coincide.

Finding K. We conclude this section by expanding on how to find the relations in Theo-
rem (1) in practice and with further examples. Let G, ..., Gy, be the connected components
of a weakly reversible reaction graph G. To determine the kernel of ¥, we consider the
associated (n + {g) x mg Cayley matrix Ag [3]. It is a block matrix with upper block Y
(n x mq) and lower block (£ x mg), where the i-th row has 1 in entry j if node j belongs
to component G;, and otherwise is zero. Since Ag is an integer matrix, then ker(¥¢) has a
basis with integer entries as well.

The form of K¢ ; is a consequence of the Matrix-Tree Theorem [21], 22]. Specifically, let
L, € R™M&*™& he the Laplacian of G with off-diagonal (k, j)-th entry equal to k¢, if j — k € Eg
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and the edge corresponds to the reaction ry, and zero otherwise. Let L. be the submatrix of
L, obtained by selecting the rows and columns with indices in the node set of the connected
component G’ of G that contains node i. Let (Lf{)(i) denote the minor corresponding to the
submatrix obtained from L/, by removing the i-th column and the last row. Then

Kgi= (=)L) @) (14)

In fact (—1)"(L})(;) also agrees with (—1)™+1+i+J times the minor obtained from L’ by
removing the i-th column and the j-th row, where m’ is the number of nodes of G'.

In practice, this is often the way to find K¢, rather than finding the trees. However, the
description of K¢ in terms of trees is a useful interpretation of K.

Example 1 (part H). The reaction graph G4 in Figurehas one connected component. The
map Vg has matrix

3102 3
Ac=10 2 3 1 0] e z*>.
11111

The first two rows of Ag are the column vectors encoded by the labels (complexes) of the
nodes of the graph. Since dg = 3, we find three linearly independent vectors in the kernel with
integer entries, u; = (—1,0,0,0,1),us = (—1,—1,0,2,0),us = (1,—3,2,0,0). Furthermore, we
have Kg = (&2/{35455, K1K3K4Ks, K1KoK4Ks, K1KoK3K5, 51/{2/{4;@6). By Theorem [2| (N, G, k)
is node balanced if and only if

-1 _ 1 =172 _ -3 72  _
KgiKes =1, Ko KgoKga =1, KaaKgHKgs = 1.
This reduces to three algebraic relations
2 2 3
K1Kg = K3K5, K1K2 = Kj, K1K3 = Kj. (15)

We find analogously relations for positive node balanced steady states with respect to the
complex balanced reaction graph Gy,

(k1 + /ﬁ5)2/€g = (k3 + /66)2/{%, &2&%(51 + /€5>2 = (k3 + K6)2mim (16)

The relation Kq,1 = Kg, 5 is k3ks = k1ke. By isolating ke from this equation and inserting
it into , we obtain after simplification the set of equations in , in accordance with
Theorem [3|(ii).

Example 1 (partI). Since G2 < G3 and the reaction graphs have the same deficiency (Ta-
ble , it follows from Corollary [1} that a steady state is node balanced with respect to Go if
and only if it is with respect to G3. This implies that equation and have the same
solutions. Similarly, a positive steady state is node balanced with respect to G if and only if
it is with respect to G4. In this example, Gy < G3 and G4 < Gs.

The reaction graphs Go and G4 which are not related by inclusion, have deficiency 3.
However, the values of x for which positive node balanced steady states exist differ. As in
Example we find the relations for G5 (identical to those for G3)

2 2.2 3 2
K1K3 = K5K6, K1kak3 = kyKe, Ko = Kikg- (17)

These equations and the equations for G4 in equation in Example define differ-
ent sets with non-empty intersection. For example, x = (1,...,1) fulfils both and ,
but k = (1,1, 1,1, 2,2) fulfils only . Note however that the matrix Aq is the same for both
reaction graphs.
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2, X, 1, X, 2, X, 14, X,
7’1HT2 \ / ‘(7“7 nHm @m -
LX) == 3,Xg «—— 5,X, LX) = 3,Xy <« 5,X,

Figure 2: Reaction graphs for the network in Example [4

Example 4. Consider a reaction network with reactions X1 = X, Xo — X3, X1 — X3
and Xs — X4 — X3, and the associated reaction graphs, depicted in Figure [2|

We have dg, = dg, = 1, but neither G; < G2 nor Gy < G;. If ¥ were a positive node
balanced steady state with respect to both G; and Go, it would follow from , applied
to node 2, that vx,_,x,(z*) = 0, which contradicts that v(z) € RZ,. Hence (N,Gi,x) and
(N, G, k) cannot be node balanced for the same choice of reaction rate constants.

A different route to reach the same conclusion consists in finding the set of reaction rate
constants k for which (N, G1,k) and (N, Ga, k) are node balanced. The complex balanced
reaction graph associated with the network has deficiency zero and thus A is complex balanced
for all k. A complex balanced reaction graph can be obtained from either reaction graph, G
or G2, by joining the nodes 2 and 4. In view of Theorem ii), it is enough to find the label
of the trees rooted at 2 and 4 for each reaction graph. We obtain that (N,G1, k) is node
balanced if and only if

KGLQ = KGl,4 — K1K3KTK8 = K1K5KgR8 + K4KsKeKg + KoK4KgKg

= K1K3K7 = K1K5K6 + KaK5kKe + K2K4ke. (18)
Similarly, (N, G, ) is node balanced if and only if

KG272 = KG274 A KR1KR3K7KS + KR1KR3KR5K8 = RoRK4KeKRS

— K1K3K7 + K1K3Kks = Kok4Ke. (19)

By (19), if (N, G2, k) is node balanced, then k1r3k7 — kakake < 0, while by (18), if (N, G1, k)
is node balanced, then kik3Kk7 — Kokgkg > 0. This shows that there does not exist s such that
N is node balanced with respect to both reaction graphs.

4 Horn and Jackson’s symmetry conditions

Horn and Jackson studied steady states in general and complex and detailed balanced steady
states in particular [I5]. They showed that there exist certain symmetry conditions on the
rate matriz such that the detailed and complex balanced steady states, and the steady states
in general, are precisely the points fulfilling these symmetry conditions. We revisit these
symmetry conditions in the light of the theory developed here.

Given a kinetics v(z), the m x m rate matriz p(zx) is such that the (7, j)-th entry is v (z) if
the k-th reaction is 74: y; — v;, and zero otherwise. Say a function {2 on R™*™ is symmetric
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at x if
Qp(x)) = Qp"()), (20)

where p! denotes the transpose matrix of p. Define the functions

Qulp(a) = pla),  Qlpa) = ple)e,  Qlp(e)) = Yepla)e

where e = (1,...,1) € R™ and Y, is the labeling matrix of the canonical complex reaction
graph. Then any detailed balanced steady state z* of N is characterized by the symmetry
condition for 4, any complex balanced steady state z* of A is characterized by the symmetry
condition for Q. and finally any steady state z* of N is characterized by the symmetry
condition for € [I5]. We might straightforwardly extend this to node balanced steady states
in the following way.

Given a reaction graph G, we define a function (g: R™*™ — R™ME*XMG entry-wise by
LG(2)ir,in = Zj1,jo if 12 — 11 € Eg and Ri,—i;, = Yj, — Yj;, and 0 otherwise. Then vg(p(z)) is
simply the rate matrix in terms of the nodes of the reaction graph GG. Now define

Q(p(a) = 16(pla))ec € BT, (21)

where e = (1,...,1) € R™¢. The i-th entry of the vector in is the sum of the rate
functions of the edges with target ¢ in G. Using , note that

Qc(p(z)) — Qa(p’(x)) = Cav(),

which is zero if and only if x is a node balanced steady state with respect to G, and if and
only if the symmetry condition is fulfilled for Q¢ at z.

If G is the canonical complex reaction graph, then v is the identity map and Qg (p(z)) =
p(x)e = Qc(p(z)). If G is a detailed reaction graph, then there is only one element in each
row of g (p(z)). Hence the vector vq(p(z))eq, up to a permutation of the entries, agrees with
Qu(p(a)).

Horn and Jackson speculated that there would be other types of steady states fulfilling
similar symmetry conditions as they verified for detailed and complex balanced steady state
[15]. The analysis above confirms that this is indeed the case and that the function Q¢ in
perhaps is the natural function to study in this context.

5 Steady states of subnetworks

In this section we present an application of our theory of reaction graphs and node balanced
steady states to determine whether a node balanced steady state of a network is also node
balanced for a subnetwork, and vice versa.

Given a reaction network N' = (S§,C, R), the network generated by a subset of reactions
R’ < R is called a subnetwork of N. Any kinetics of A/ naturally induces a kinetics of a
subnetwork.

Let N1,..., N, be subnetworks generated by disjoint subsets of reactions R1,...,R; S R,
respectively. Let Rpi1 = R\ Ule R; and let Ny,q1 be the subnetwork generated by R, 1,
called the complementary subnetwork. Observe that Ry,...,Rey1 form a partition of R.

Consider a reaction graph G associated with A/. For i = 1,...,¢+ 1, let G; = (V;, F;) be
the subgraph induced by the edges corresponding to the reactions of R;, and let m¢, denote
the number of nodes of G;. After renumbering the nodes by means of a bijection between
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{1,...,mg,} and V;, the graph G; becomes a reaction graph associated with N, denoted by
Gy;. We say that Gy, is a reaction graph associated with N; induced by G. That is, G;
and G, are isomorphic digraphs, but G; is a subgraph of G, while G, is a reaction graph
associated with N;.

One might construct a new reaction graph G’ by taking the disjoint union of G1,...,Gyi1,
or equivalently, the disjoint union of Gas,...,Gxn, ,, up to a numbering of the nodes. Specif-
ically, let P be the partition defining [G]. We define a new partition P’ as follows: j ~p/ k if
and only if j ~p k and further, the edge involving j and the edge involving k in G, correspond
to reactions of the same subset R; (equivalently, the corresponding edges of G belong to the
same subgraph G;).

Clearly, P’ < P and any reaction graph G’ with partition P’ fulfills G < G’. Any such G’
is called a reaction graph induced by G and the subnetworks N1, ..., Np.

Let n; be the number of species of NV; and 7; denote the projection from R™ to R™, obtained
by selecting the indices of the species in N;.

Proposition 6. Consider a reaction network N and subnetworks Ni,..., Ny with comple-
mentary subnetwork Nyy1. Let G be a reaction graph, G, the reaction graph associated with
N; induced by G, for all i = 1,...,0 + 1, and G’ a reaction graph induced by G and the
subnetworks N1,...,Ny. Assume N is equipped with mass-action kinetics for some choice of
reaction rate constants.

Let z* € RL,. The following statements are equivalent:

(i) x* is a node balanced steady state of N with respect to G, and w;(xz*) is a node balanced
steady state of N; with respect to Gy, for alli=1,...,¢.

(i1) x* is a node balanced steady state of N with respect to G'.
(iii) w;(z*) is a node balanced steady state of N; with respect to Gy, for alli=1,...,0+ 1.

Proof. After renumbering the elements of the set of reactions, there is a choice of G” with
[G"] = [G'] such that Cgr is a block matrix with ¢ 4+ 1 blocks. Since the statements are
independent of the choice of representative of the equivalence class of G’, we assume G’ = G”.

The i-th block of C¢r is precisely the incidence matrix of G, for the induced numberings.
Let v be the kinetics of A/ and v; the kinetics induced on N;. Let p; be the cardinality of
Ri, and let p denote the projection from RP to RP:, obtained by selecting the indices of the
reactions in R;. Note that

wi(mile*)) = pilo(a*).
(i) < (iii): We have z* is node balanced with respect to G’ if and only if
CGNiUi(m(w*)) = C’GNipi(v(x*)) =0, foralli=1,...,0+1,

if and only if m;(2*) is a node balanced steady state of N; with respect to Gy, for all i =
1,...,0+1.

(iii) = (i): If (iii) holds, then clearly the second part of (i) holds. Further, since we have
proven (ii) < (iii), * is a node balanced steady state of N with respect to G’, which, since
G < @', also is a node balanced steady state of N/ with respect to G. This shows that (iii)
implies the first part of (i).
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(i) = (ii): If (i) holds, then Cgv(z*) = 0 and
Co(z™) = (0,---,O,CGWHW+1(7T€+1(9C*))> ;

where the zeroes cover the first mj + - - - + my entries. By Proposition iii), there exists an
(m@ x mer)-matrix B such that Cq = BCq. Write B = (Bj|...|By+1) such that each block
B; has m; columns. Then, by hypothesis we have

Be+1CGNL,HW+1(7T£+1($*)) = 0. (22)

Let ¢: Vg — Vi be the morphism defining the inclusion G < G’. By construction (see the
proof of Proposition (iii)), the j-th column of B has one non-zero entry, equal to one, in the
©(j)-th row. By definition of G', ¢ is injective on each Vi,. In particular, Byq has mg41 non-
zero rows, which define a permutation matrix. Thus, implies Cg Né+lv4+1(7rg+1(x*)) = 0.
Hence Cgrv(z*) = 0. O

Note that if §¢ = d¢r, then any node balanced steady state with respect to G automatically
fulfills the three equivalent statements in Proposition [6}

An interesting consequence of Proposition 6 and Theorem 1 is that, given a reaction graph
G, either all or none of the positive steady states of N are node balanced with respect to G
and fulfil that m;(z*) is a node balanced steady state of N; with respect to G, fori = 1,..., 7.
Indeed, either all or none the positive steady states of A/ are node balanced with respect to
G

In the particular setting of complex balanced steady states, the reaction graphs induced
by a complex reaction graph are complex reaction graphs associated with the subnetworks.
Proposition [6] says that the set of complex balanced steady states that are also complex
balanced for a set of disjoint subnetworks agree with the set of node balanced steady states
for a specific reaction graph defined from the subnetworks. Therefore, the properties of node
balanced steady states derived from Theorem and [3] also apply in this case. In particular,
positive steady states of this type can only exist if the reaction networks N7, ..., N, as well as
the complementary subnetwork, are weakly reversible. Moreover, conditions on the reaction
rate constants k for which such steady states exist are given in Theorem [2] Finally, if there
exists a positive complex balanced steady state of A that is also complex balanced for a
subnetwork, then so is any positive steady state of N.

Example 1 (part J). Consider the following subsets of R:
R1 = {r1,72,76}, Ro = {r3,r4,75}.

Let respectively N7, N3 denote the subnetworks generated by R1, R2. Consider the complex
balanced reaction graph G in Figure [l Then G3 is a reaction graph induced by G; and Nj.
By Proposition [6] z* is a complex balanced steady state for A" and A7, if and only if z* is
a node balanced steady state with respect to GG3. In this case, it is also a complex balanced
steady state for Ns.

Example 1 (part K). Let A/ be the subnetwork generated by R’ = {ry,ra,75,7r6}. Both N/
and N’ are weakly reversible, but the complementary subnetwork, with reactions rs, r4, is not.
Thus there does not exist reaction rate constants for which there exists a positive complex
balanced steady state for both A" and N’.

If the sets of reactions Ry, ..., Ry are not disjoint, then there is not a general unambiguous
answer similar to that of Proposition [6]
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6 Proofs

6.1 Proof of Theorems [1] and 2

To ease the notation, we use [k] = {1,...,k} for ke N.

One way to prove Theorem [If and [2] would be to reproduce the arguments of the original
results for complex balanced steady states. Indeed, the original arguments work line by line
because it is not explicitly used in the proofs that the complexes (node labels of the reaction
graph) are different from each other. This is not even stated as a requirement in [3, [4]. The
reader familiar with these results will readily see that this is the case. However, we take a
different route here.

For a given network A, we construct another network A’, such that their steady states
agree. Further, the complex balanced steady states of A/ are in one-to-one correspondence
with the node balanced steady states of A/. Hence, we can lift the (known) results for complex
balanced steady states such that they hold for node balanced steady states as well.

Let G be a reaction graph associated with N. We start with the construction of the
network N/ = (§',C’, R’). To this end, we define the species set as &' = S x Vg = {(X;,7) |
X; €S8, je Vg}, and define

n

n
e=Tdmax) yi and o = > (V)i (X0 )). (23)
i=1 1=1

Since Yj is the label of the node j, then (Y}); € N is the coefficient of Y} in species X; in the
original network. The reaction set R’ is defined as

R ={y' =y |i—jeEg}uleXij) - e(Xi,5') | (Xi,5), (Xi,5') € 8}, (24)
and the complex set as
C' = {yl, o ymetu {e(Xi 7 (X, d) € S'}.

This set has cardinality mg + nmg = mg(n + 1). We number the set C' according to the
order
ylo Y™ (X, 1), e(X,mG), . e( X, 1), e( X, ma), (25)

and the species set analogously: (Xi,1),...,(X1,mg),...,(Xn,1),...,(Xn, mg). Reactions
are numbered such that the reactions 1,...,p correspond to the reactions in R (first set in
, and the rest of the reactions are ordered increasingly in ¢ and arbitrarily within the
subsets of reactions involving (X;,j), j = 1,...,mqg. The complex reaction graph G, of N
will refer to this numbering.

There is a graph isomorphism from G and the subgraph of G’ induced by the nodes
1,...,mg (those with label y', ..., y™¢) that maps i € Vg to i. The coefficient ¢ ensures that
the source and target of the reactions in are not one of ¢/ in . Thus the reaction
graph G/, has n extra connected components, one for each X;, whose nodes are labeled by
e(Xi,4), j = 1,...,mqg. These components are complete digraphs since there is a directed
edge from every node to every other node.

For example, for the reaction graph

1aX1 + X2 - 273X17
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we have € = 4 and the reaction network N’ consists of the reactions
(‘leal)+ (X2a1) 4’3(X1a2)7 4(X171) :4(X1a2)7 4(X271) :4(X2a2>'

The species set has nmg elements. We identify R®"™¢ with R™*™¢ and index the con-
centration of the species (Xj,j) as x;;. Consider the linear map m: R"*™¢ — R™ and the
injective linear map ¢g: R™ — R™*™¢ defined by

mg
m(z)i = Z Tij, i€ [n], for all z € R™*™a,
j=1

9(x)ij = x4, i€ [n],j € [mg], for all x € R".
Note that g maps positive vectors to positive vectors and that 7(g(x)) = mg .

Lemma 4. Let s = dim(S) and let S" be the stoichiometric subspace of N'. Then S = m(5’).
Further, S" has dimension s +n(mg — 1) and the deficiency of the network N is d¢.

Proof. Let €; ;—.;» = (Xj,j') — (Xj,j) be the vector in R"*™¢ that has two nonzero entries,
the (7, 7)-th, where it is equal to —1, and the (4, j')-th where it is equal to 1. Then

S = <yj — |i—je Eg> + <ei,j—>j’ |ie[n],j,5 € [mg]>.
Let us show that 7(S’) = S. Observe that 7(S’) < S since 7(e; jj/) = 0 and 7(y/ —y') =
Y; —Y;. Furthermore, if v € S, then
u= 3, M(5=Y)= X Xyl —y) € w(S),
i—jeEq i—jeEqg

hence 7(S5") = S.
To determine dim " we do the following. For € ker m we have 37 z;; = 0 for all i € [n].
Consider the vector

mag
/
i=1j=2
Since the nonzero entries of e; 1, are (e;1-;)i; = 1 and (e;,1-;)i1 = —1, we have x;@k, = Tp
if " # 1. Further, using that = € kerm by assumption, we have z}, = — Z;n:% Tpj = Tpr. It

follows that = 2’ and thus kerm = {e;1-; | ¢ € [n],j € [mg]) < S’. For each i € [n], the
vectors e; 1—; are the columns of the incidence matrix of a connected graph with mq nodes,
which has rank mg — 1. It follows that dim ker 7 = n(mg —1). Now, by the first isomorphism
theorem

dim S’ = dimker 7 + dim 7 (S’) = s + n(mg — 1).

Since C’ has ¢ + n connected components and mg(n + 1) nodes, the deficiency of N is

5N,:mG(n+1)—3—n(mg—1>—ﬁg—nsz—S—KG:5G~
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Proof of Theorem In order to prove Theorem [I| we use that the theorem holds for
complex balanced steady states [15, Theorem 6A]. Since a positive node balanced steady state
is in particular complex balanced, any positive node balanced steady state is asymptotically
stable. Further, if there is one positive node balanced steady state with respect to GG, then the
network A admits exactly one positive steady state within every stoichiometric compatibility
class, which is complex balanced. Therefore, to prove the theorem all we need is to show that
if there is one positive node balanced steady state with respect to G, then all positive steady
states are node balanced with respect to G.

We endow N’ with mass-action kinetics, such that the reaction rate constant r;_,; of
y' — 97 is that of ¥; — Y; for any © — j € Eg. This implies that the reaction rate constants
of the reaction R;_,; in G and G, agree. The reaction rate constant of ¢(X;, j) — €(Xj,j’) is
set to Rij—j = 1.

By (23), for any complex of the form y* € C’, the only nonzero entries are y¥ = (Y4);,
i =1,...,n. This gives

k _ , .
g@” =[] gty =T =" ga) N =af(26)
(i.)e[n]x[mc] ie[n]

Denote the kinetics of N' by v and that of N7 by v'. Then, by the choice of reaction rate
constants we have,

V' (g(z)) = (v(z), (2, ..., 29), ..., (x5, ..., 15)), (27)

where for all i € [n] the vector (z5,...,z¢) has length mg(mg — 1).

The incidence matrix of the canonical complex reaction graph of N’, denoted by C’, is
block diagonal with the first block equal to C¢, and the remaining blocks 2,...,n+ 1 equal to
the incidence matrix of a complete digraph with mg nodes. We have the following key lemma.

Lemma 5. (i) C'v'(g(z)) = (Cgv(x),0,...,0) € Rme+tnmeg,

(ii) © € R, is a positive node balanced steady state of N with respect to G if and only if
g(x) e RLS™C is a positive complex balanced steady state for N.

(iii) If ' € RZG™C is a positive complex balanced steady state of N, then there exists a unique

z € RY such that ' = g(z).

Proof. (i) By the block form of C" and , every column in the blocks 2, ... n+1 appear with
+ and with — sign in the same block. Thus multiplication of (i + 1)-th block with (z5,. .., z¢)
is zero. The result follows now because the first block of C’ is C; and the first m¢ entries of
v'(g(x)) agree with v(z).

(ii) follows directly from (i).

(iii) For fixed i € [n], consider the incidence matrix of the complete digraph corresponding
to the nodes (i, ) for all j € [mg]. Each row of the matrix has exactly mg — 1 entries equal
to —1 and mg — 1 entries equal to one, since there are mg — 1 edges with target 7 and mg —1
edges with source j. For the edges with source j, the rate function is (z/)¢(X+) = (2 );- Thus
complex balancing implies

(ma =G = >, @)y, forallje [mg].
J'€lmel.i'#3
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For distinct ji, j2 € [m¢] this gives

(me = D@, — (@) = X, @)y — X @) = @) — @),

j,EVGv.jl#:jl jIEVijls’éjZ
This gives 0 = mg((2')5;, — (2)5;,). Since 2’ is positive, we obtain z; = a7, for all pairs
Jj1,j2 and all i € [n]. As a consequence, 2’ is in the image of g. Unicity follows because g is
injective. O

By Lemma (ii), if N admits a positive node balanced steady state z* with respect to G,
then g(z*) is a positive complex balanced steady state of N7 and it follows that all positive
steady states of N’ are complex balanced. Let now x** be another positive steady state of
N. The stoichiometric compatibility class of N’ containing g(z**) has one positive steady
state 2/, which is complex balanced. By Lemma [5iii), there exists 2” € R”; such that
z' = g(2”), and by Lemma [5[ii), it follows that z” is a node balanced steady state with
respect to G. Let us show that z” = z**. We have that g(z” — 2**) € ', since 2’ and
g(z**) belong to the same stoichiometric compatibility class of A”. By Lemma |4, it follows
that 2" — 2** = Lr(g(a/ — 2**)) € S. Thus 2” and z** are in the same stoichiometric
compatibility class of N and they are both positive steady states. Since there is a unique
positive (complex balanced) steady state in each class, they must coincide. This concludes

the proof of Theorem O

Proof of Theorem Consider the labeling matrix Y’ of the canonical complex reaction
graph of A/ with numbering of complexes given in . We let a vector u € RMGTN™MG he
indexed as
U= (UL, ey Umgs UlTs -« s Ul - - -5 Unls - - - s Unme)

and use the same indexing for the columns of Y’. The matrix Y’ has one or two nonzero
entries in each row: if (Xj,j) is part of ¢/, then the row corresponding to this species has two
nonzero entries: (Y;); in column j and € in column (4, 7). If (X;, j) is not part of 3/, then the
row corresponding to this species has one nonzero entry: € in column (i, ).

Let ¥’ be the map @D for the canonical complex reaction graph of N”. We start by giving
an explicit isomorphism between ker ¥’ and ker ¥, which exists since both vector subspaces
have dimension dg (cf. Lemma {4} Proposition . Consider the projection map

p: RMetnme _, RMG p(x) = (T1,. .., Tmg)-
Lemma 6. The linear map p induces an isomorphism from ker W' to ker Ug.

Proof. We first show that p(z) € ker U for = € ker U, Using the form of the labeling matrix
Y’, we have that if x € ker ¥/, then

(Yj)ixj = —exij, for all i € [n],j € [m¢]- (28)

Thus, for every i € [n] we have

ma ma
D (Ypiwj = —€ Y aiy =0,
j=1 j=1

by definition of W', since the nodes (i,1),..., (i,mg) form a connected component of C’. By
the correspondence between connected components of C’ and G, Yiica, vi =0 forall k € [{g].
This shows that p(x) € ker ¥g.
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Let us find the kernel of p restricted to ker ¥/. We have p(z) = 0 if and only if z; = 0 for
allj=1,...,mqg. By , it follows that also x;; = 0 for all ¢ and j. As a consequence x = 0.
Therefore p is an injective linear map between two vector spaces of the same dimension, ker ¥’
and ker Wy, and it is thus an isomorphism. O

By Theorems 7 and 9 in [3], there exists a positive complex balanced steady state for N’
with a vector of reaction rate constants ' if and only if Theorem (1) holds, that is,

(K')* =1, for all u € ker ¥/,

where K’ is computed from the spanning trees in C’ with labels given by «’. For the particular
choice of reaction rate constants we have made,

Kl =K., forallie[n],j,j e [me] (29)

Indeed, the reaction rate constants of any spanning tree rooted at e(Xj;, j) or €(X;, ;') (in the
corresponding connected component) are equal to one. Moreover €(X;, ) and €(X;, j’) are in
the same connected component, which is a complete digraph. Hence the number of spanning
trees rooted at €(X;,j) and €(X;, ;') is the same.

Further, using that G and the subgraph of C’ with nodes 1,...,mg are isomorphic and
preserve the reaction rate constants, it holds that

Kg = p(K). (30)

If u € ker W', then 7 u;; = 0. Therefore

n mg n m
(K'Y = p(K"yP@ [T T [ (L) i = oy T () 2t = p(x'ye = k5™,
i=1j=1 i=1

Since p is an isomorphism between ker U/ and ker ¥, we conclude that
(K" =1, for all u € ker ¥, < K¢ =1, for all u € ker . (31)

Consequently, we have K@ = 1 for all u € ker ¥ if and only if N’ admits a positive complex
balanced steady state for a choice of reaction rate constants ' such that &} iy =1 for all
i €[n], 7,7 € [mg] and /4;2_,] = Ki_j for all i —» j € Ecv, if and only if N admits a positive
node balanced steady state with respect to G for the corresponding choice of reaction rate
constants  (Lemma [5(ii)). This proves (i).

The proof of part (ii) follows the same line of arguments. We use the same notation for
reaction rate constants x of N" and ' of N. By [, Eq (21)], (ii) holds for complex balanced
steady states of N7. That is, 2’ € RZ{™¢ is a complex balanced steady state of A" if and only
if
K/ — Ki(2)" =0, Y(i,j)eEq,  and

7

K, (2) o) — KL, ()X = o, Vie[n], 4,4 € [ma].

Let ' = g(x). By and , the equations in the second row are satisfied. According
o and , the equations in the first row are equal to K;z¥i — Kj:nyj = (0. This gives
the following: z is a positive node balanced steady state of N with respect to G, if and
only if g(z) is a positive complex balanced steady state of N7 (Lemma [5[(ii)), if and only if
K;x¥i — K;2¥i = 0 for all (i,7) € Eg. Thus (ii) holds and the theorem is proven. O
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6.2 Proof of Theorem [3

To simplify the notation, we let K denote K¢ and K’ denote K throughout the subsection.

(i) The nodes i;,i; do not belong to the same connected component of G. In
this case, dg = d¢r by Proposition [d] We will show that the two sets of equations in x for
which (N, G, k) and (N, G’, k) are node balanced can be chosen to be the same. Let G, and
Gy, be the connected components of G containing i1, i2 respectively, and G; be the connected
component of G’ containing k. The morphism ¢ is a bijection between Vg\{i1,i2} and Vi \{k}
and induces an isomorphism between the subgraph of G obtained by removing Gy, , G,, and
the subgraph of G’ obtained by removing G7. Let V; (vesp. V}) denote the set of nodes of the
i-th connected component of G (resp. G').
We define two linear maps a: R™¢ — R™c, and : R™c — R™¢ by

o Tp(4) if 4 # 41,19
T,—1(; iti#k g e
oz = { 0 AR ) S, e =i
i, +xi, ifi=k, .
ZjeVpl xcp(j) ifi = 19.

Proposition 7. The morphisms a and [ induce isomorphisms between ker ¥ and ker Wy .

Proof. We first show that oo B(z) = z if z € ker Ugs. For i # k, we have ¢~ 1(i) # 41,42 and
this gives

(4] ﬁ(w)z = ﬁ(x)wﬂ(i) = prOgofl(i) = Tj.
For ¢ = k, using that x € ker U, we have

aofz)y = f)i + Blx)i, = Z To(y) + Z Tp(j) = Tk + Z Tj = T

JEVpy J€Vp, Jjevy
This proves that oo B(z) = 2. In particular, § is injective.

We show now that f(ker W) < ker W Recall that Yé (i) = Yi for all i e [ma]. Consider

the labeling matrices Y, Y’ and the linear maps induced by Y, Y’ in R™¢ and R™c, respectively.
We will show that Y =Y’ o« in R™G. For z € R™¢ we have

mg, mg
Y'oa(x) = Z a(z);Y] = (ziy + x4,V + Z xw_l(i)}’i'
i=1 i=1,i#k
mg mg
=x; Y + xiQY;'Q + Z IjYLp(j) = Z l‘jY} =Yuzx.
J=1,j#11,52 Jj=1

Let x € ker U¢r. For j # p1, po, let Gé(j) be the connected component of G’ isomorphic to G
by ¢. Then

YopB(z)=Yoaof(z)=Y'z=0
Z /B(x)z = Z ‘Tcp(z) = Z Ty = 07 j #p17p27

1€V 1€Vj ievt/(j)
2 B@i=B@a+ DL T = X Tew T D Tew = 2w =0
i€V, 1€V ,i#11 1€Vp, 1€Vp ,i#11 ieVy
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The last equation with the roles of p; and ps interchanged holds analogously. Thus ¥ (5(x)) =
0 and S(x) € ker ¥. Since dimker U = §r = dg = dimker ¥ and f is injective, § is an
isomorphism and so is . In particular a(ker V) < ker Uer. O

The proposition shows how the morphism § can be used to find a basis of ker ¥ from a
basis of ker W, provided that G’ is obtained from G by joining one pair of nodes and G’ has
one fewer connected components than G.

Proposition 8. Let u € ker Wr. Then
K" = KAW,

Proof. If i is a node of G that does not belong to G}, nor G,, then K; = K;(i). Ifi € Vj,, then
any spanning tree rooted at (i) in G, consists of the image by ¢ of the union of a spanning

tree rooted at 7 in G, and one tree rooted at i in G,. Thus K;(Z.) = K;K;,. If i € V},, then
we obtain analogously that K:O(i) = K;K;,. Note that if i = i1 or i3 and ¢(i) = k, then the
two equations agree, K} = K, Kj,. Using the definition of 3, this gives:

KW if i ¢ Vpy UV,

7

KPR i e Vy,\ (i)

K') i) = R
( )LP(Z) Kf(u)zKilw(l) ifie %2\{22}
KPR i i =iy,
Thus
mG/
u_ uj _ u Up(i) _ B(u)i U (4) Uep(4)
K" =TTy = [ w5 = [ Il & ”H K70 ] Ky
Jj=1 i€[ma]\{i1,i2} i€[ma]\{i1,i2} 1€Vp, 1€V,
7 12 1
iE[mG]\{il,ig}
This concludes the proof. O

We are ready to prove Theorem [3(i). Using Theorem [2{i), (N, G’, k) is node balanced if
and only if K’ = 1 for all u € ker U¢y. By Proposition 8] this is equivalent to K#®) = 1
for all u € ker W, which in turn is equivalent to K% = 1 for all u € ker V¢, because 3 is an
isomorphism. Using Theorem [2{i), the later condition is equivalent to (N, G, k) being node
balanced. This concludes the proof of Theorem [3[i). O

Case 2: The nodes i1,i2 belong to the same connected component of G. In this
situation, we have d¢r = g — 1 and mg = mg + 1. Let G, be the connected component of G
containing 41,42, and G; the connected component of G’ that contains k. Again, we have that
¢ induces an isomorphism between G and G’ outside the connected components G, and G’q.

Consider the linear and injective morphism ~: R — R™¢ defined for i € [ma] by

) T if 1 # g
s {o if i = is.

(All constructions could be done alternatively by replacing i with ;).
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Proposition 9. Let §(i1,i2) € R™C be the vector with §(i1,12);, = 1, 0(i1,42)i, = —1 and the
rest of entries equal to zero. Let {u1, ... ,U5g,} be a basis of ker W, Then

{v(u),...,v(us,),d(i1,i2) }
is a basis of ker V.

Proof. Since the io-th component of y(u;) is zero for all j € [d¢], the vector (i1, 42) does not
belong to (y(u1),...,v(us;)). Since v is injective, the vectors y(u1),...,y(us,, ), d(i1,72) are
linearly independent and generate a vector space of dimension ¢ + 1 = dg = dimker ¥g.
Thus all we need is to show that 6(i1,i2),v(u) € ker ¥ for all u € ker Ugy.
We have
Yé(ir,ia) =Y, —Yi, =Y, =Y, =0.
Since i1 and i9 belong to the same connected component of G, we have ZieGj d(i1,172); = 0 for

all connected components G; of G. Thus (i1,42) € ker V.
For a connected component G of G, let G| 1) be the corresponding connected component

of G’ under the morphism ¢, such that ¢(p) = ¢q. For u € ker U and j € [{g], we have

mg mg mg mgr
Yv(u) = Z y(u);Y; = Z Up(s) Yi = Z l)Y Z u;Y; =Y'u =0,
i=1 i=1,i%i2 i=1,i%i2
o= 5 w= X weo
iEG]’ iEGj,i?él'z zth(J)
This shows that v (u) € ker U, which concludes the proof. O

Proposition 10. Assuming K%(12) = 1. then for all u € ker U it holds
KW = g™,

Proof. Because 7 induces an isomorphism of digraphs outside G, and G;, we can without loss
of generality restrict the proof to the case, where G, G’ are strongly connected. For simplicity,
we let m = mg such that Vg = [m + 1] and Vi = [m], and assume that ¢ is the identity on
{1,...,m} and sends m+ 1 to 1 (so i1 = 1,49 = m + 1,k = 1). In this setting, Ko(ini2) = 1 ig
equivalent to K1 = K;,11.

Assume that it holds

KK, — K;K{ =0, foralli=1,...,m. (32)

Not that since the graphs are strongly connected, none of K;, K] is zero. Then, using K; =
K11, we have

Uj

o T s K u K" [K
= = e =T T[] <[5
=1 =1

where we use >,/ u; = 0 since u € ker Uy

Thus, all we need is to show that holds provided K1 = K,,,+1. Below we use the indices
k, ¢ generically. Let @3- be the set of spanning trees of G’ rooted at j. Given F, B < [m + 1] of
cardinality M, let O(F, B) be the set of spanning forests of G with M connected components,

:|eril wi MM
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such that each component is a tree rooted at one element of B and contains exactly one
element of F'. Let
©i; = O0({1,m+ 1}, {i, j}).

If ¢ € ©; 41, then ( is a spanning forest that consists of two trees (;, (;+1 rooted respectively
at ¢ and m + 1 such that 1 is a node of {;. Analogously, ( € ©1; is a spanning forest that
consists of two trees (1, (; rooted respectively at 1 and ¢ such that m + 1 is a node of ;. Then,
© induces two one-to-one correspondences

/ /
O; «— O i1 LU O, 07 «— O1m41,

for 2 < i < m. The one-to-one correspondence between Fg and E¢ induces a bijective map
¢ from the set of subgraphs of G to the set of subgraphs of G’. It is thus enough to show
that @ maps ©; 41 U ©1,; to O} and O 41 to ©}. First, observe that for any subgraph ¢
of G, ¢(¢) contains an undirected cycle if and only if ¢ contains an undirected cycle or an
undirected path joining 1 and m + 1. Hence, for ¢ in ©; 41, ©1,; or O1 41, P(¢) is acyclic.
Moreover, () is connected because ¢ consists of two disjoint trees, one containing 1 and
the other containing m + 1. Hence, ¢({) is a tree, and since ¢ is a spanning forest, $(¢) is a
spanning tree. Finally, if ¢ € ©;,,41 L O1;, then ¢ has no edge with source i, so ¢({) € ).
Similarly, ¢ € ©1 4,41 has no edge with source 1 or m + 1, so ¢(¢) € O], as desired.
By hypothesis, K1 = K,,+1. Thus

KK =K | Y ¢+ Y =K > | +Kna| Y, . (33)

(€O m+1 (eO1; CEO4m+1 (€014

We make now use of the All-Minors Matrix-Tree theorem, which extends equation .
Since we are assuming G is connected, the Laplacian matrix L is of size (m+1) x (m + 1) (we
omit reference to  for simplicity). Recall that L;) is the minor of L obtained by removing
the row m + 1 and columns j of L and taking the determinant. Let L; ) for j < k be the
minor of L obtained by removing rows 1, m + 1 and columns j, k. Then it holds that [I7, Th

3.1]
L(j,k) _ (_1)j+k+1 Z Cﬁ_
Ceej,k

In view of and , to prove we need to show that
(_1)1+i+m+1+1L(1)L(i,m+1) + (_1)m+1+i+1+1L(m+l)L(1,i) _ (_1)i+1+m+1+1L(i)L(l7m+l)7

that is, we have to show that it holds

LyLim+1) + Lansn L) = Ly Lam+1)- (34)

We find Ly, L(n41) and L(;) by expanding the corresponding submatrix of the Laplacian
used for the computation of each of the minors along the first row. Then is equivalent to

m+1 m m+1

Z( 1Ly jyLgmer) + Z Y L meny Ly = Z (=D)L jyLme1)- (35)
i=2 j=1 j=Lji

where ¢; = j+11if j <iand jif j > 4.
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Equation has three sums, which we refer to as the first, second and third sum for sim-
plicity, reading from left to right. The summand for j = 4 in the first two sums is respectively
(=1)"L(1,L(ims1) and (=1)"* L 1) L1 5y, which cancel out. The two terms for j = 1 in
the second and third sums agree, using that €; = 2. Finally, the summands for j = m + 1 in
the first and the third sums agree since €,;,+1 = m + 1.

We consider now the three summands, one for each sum, corresponding to a fixed j €
{2,...,m}, j # i. We will use the Pliicker relations on the maximal minors of a rectangular
matrix [16]. These are as follows. Consider a d x n matrix A, d < n. For a set I < [n], let As
be the minor obtained after removing the columns with index in I of A. Consider two sets
I, K of cardinality n —d + 1 and n — d — 1, respectively. Then it holds that

Z (—1)*Apr Aoy =0,
kel\K

with €, = #{¢ el |k <} +#{le K | k < {}. (See for example [16]. Note that the formula
given in [16] is stated in complementary notation, indicating the columns that are kept to
construct the minor, and not those that are removed).

Let A be the (m — 1) x (m + 1) submatrix of L obtained by removing the first and last
rows. We apply the Pliicker relation to A with the sets I = {1,j,m + 1}, K = {i} and obtain

(_1)€m+1L(1,j)L(i,m+1) + (_1)€jL(1,m+1)L(i,j) + (_1)€1L(j,m+1)L(1,i) = 0.

We have €y,41 = 0,6 =2+1=3,and ¢ = 11if j >4, and € = 2 if j < 4. Thus, after
rearranging the terms, we obtain

(=1 L1y Ligmery + (1 Ly Ly — (19 L ety Lama) = 0-
This implies that holds and concludes the proof. ]

We are now ready to prove Theorem [3{ii). By Theorem [fi) and Proposition[9] (N, G, k) is
node balanced if and only if K7 = 1 for all u € ker ¥ and K%(1:22) — 1. By Proposition
this is equivalent to K'* =1 for all u € ker U and K;, = Kj,, which in turn is equivalent to
(N, G, k) being node balanced and K;, = Kj,, by Theorem [2{i). This concludes the proof. [J
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