1,499 research outputs found

    Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

    Get PDF
    Background: Tellurite (TeO32-) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO32- into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO32--reducing bacteria can lead to the decontamination of polluted environments and the development of "green-synthesis" methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO32- have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Results: Aerobically grown BCP1 cells showed high tolerance towards TeO32- with a minimal inhibitory concentration (MIC) of 2800μg/mL (11.2mM). TeO32- consumption has been evaluated exposing the BCP1 strain to either 100 or 500μg/mL of K2TeO3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K2TeO3 (conditioned growth). A complete consumption of TeO32- at 100μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO32- at 500μg/mL. However, a greater TeO32- consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO32- reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical-physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500μg/mL of K2TeO3) or the growth conditions (unconditioned or conditioned grown cells). Conclusions:Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO32- during its growth under aerobic conditions. Moreover, compared to unconditioned BCP1 cells, TeO32- conditioned cells showed a higher oxyanion consumption rate (for 100μg/mL of K2TeO3) or to consume greater amount of TeO32- (for 500μg/mL of K2TeO3). TeO32- consumption by BCP1 cells led to the production of intracellular and not aggregated TeNRs embedded in an organic surrounding material. The high resistance of BCP1 to TeO32- along with its ability to produce Te-nanostructures supports the application of this microorganism as a possible eco-friendly nanofactory

    Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

    Get PDF
    Tellurite (TeO32-) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32- into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32-, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assembly and growth that resembled the chemical surfactant-assisted process for NRs synthesis. The TeNRs produced by the BCP1 strain showed an average length (>700 nm) almost doubled compared to those observed in other studies. Further, the biogenic TeNRs displayed a regular single-crystalline structure typically obtained for those chemically synthesized. The chemical-physical characterization of the biogenic TeNRs reflected their thermodynamic stability that is likely derived from amphiphilic biomolecules present in the organic layer surrounding the NRs. Finally, the biogenic TeNRs extract showed good electrical conductivity. Thus, these findings support the suitability of this strain as eco-friendly biocatalyst to produce high quality tellurium-based nanomaterials exploitable for technological purposes

    A hidden integral structure endows absolute concentration robust systems with resilience to dynamical concentration disturbances: A hidden integral structure endows absolute concentration robust systems with resilience to dynamical concentration disturbances

    Get PDF
    Biochemical systems that express certain chemical species of interest at the same level at any positive steady state are called 'absolute concentration robust' (ACR). These species behave in a stable, predictable way, in the sense that their expression is robust with respect to sudden changes in the species concentration, provided that the system reaches a (potentially new) positive steady state. Such a property has been proven to be of importance in certain gene regulatory networks and signaling systems. In the present paper, we mathematically prove that a well-known class of ACR systems studied by Shinar and Feinberg in 2010 hides an internal integral structure. This structure confers these systems with a higher degree of robustness than was previously known. In particular, disturbances much more general than sudden changes in the species concentrations can be rejected, and robust perfect adaptation is achieved. Significantly, we show that these properties are maintained when the system is interconnected with other chemical reaction networks. This key feature enables the design of insulator devices that are able to buffer the loading effect from downstream systems - a crucial requirement for modular circuit design in synthetic biology. We further note that while the best performance of the insulators are achieved when these act at a faster timescale than the upstream module (as typically required), it is not necessary for them to act on a faster timescale than the downstream module in our construction

    Polarization-Dependent Phase of Light Propagating in Optical Fibers

    Get PDF
    As it propagates in a real single-mode fiber, light accumulates a phase delay and undergoes variations of its polarization state. These two phenomena are partly related to each other, owing to both well known geometric effects, i.e. the Pancharatnam's phase, and less known dynamic ones. This paper aims at reviewing these concepts, highlighting the polarization-depended phase of light that propagates in a single-mode fiber. We present a mathematical treatment using the familiar language of Jones and Stokes vectors and report experiments supporting the theory. The presented analysis has a general validity, and it can describe phase variation with respect to several parameters, such as distance, frequency and time. Its extension to multimode and multi-core fibers is also discussed. The results can be used for a better modelling and understanding of coherent transmission systems and interferometric fiber optic sensors

    Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: New metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Get PDF
    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD-coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation-were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria-Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step

    Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

    Get PDF
    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs

    Unravelling the role of the group 6 soluble di-iron monooxygenase (SDIMO) SmoABCD in alkane metabolism and chlorinated alkane degradation

    Get PDF
    Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.10) characterized by a transposon insertion in the gene smoA encoding the alpha subunit of the plasmid-located SDIMO SmoABCD. The mutant BCP1-2.10 showed a reduced capacity to grow on propane, lost the ability to grow on butane, pentane and n-hexane and was heavily impaired in the capacity to degrade chloroform and trichloroethane. The expression of the additional SDIMO prmABCD in BCP1-2.10 probably allowed the mutant to partially grow on propane and to degrade it, to some extent, together with the other short-chain n-alkanes. The complementation of the mutant, conducted by introducing smoABCD in the genome as a single copy under a constitutive promoter or within a plasmid under a thiostreptone-inducible promoter, allowed the recovery of the alkanotrophic phenotype as well as the capacity to degrade chlorinated n-alkanes. The heterologous expression of smoABCD allowed a non-alkanotrophic Rhodococcus strain to grow on pentane and n-hexane when the gene cluster was introduced together with the downstream genes encoding alcohol and aldehyde dehydrogenases and a GroEL chaperon. BCP1 smoA gene was shown to belong to the group 6 SDIMOs, which is a rare group of monooxygenases mostly present in Mycobacterium genus and in a few Rhodococcus strains. SmoABCD originally evolved in Mycobacterium and was then acquired by Rhodococcus through horizontal gene transfer events. This work extends the knowledge of the biotechnologically relevant SDIMOs by providing functional and evolutionary insights into a group 6 SDIMO in Rhodococcus and demonstrating its key role in the metabolism of short-chain alkanes and degradation of chlorinated n-alkanes

    On the development of an efficient regenerative compressor

    Get PDF
    AbstractRegenerative compressors are attractive machines used in several industrial processes. Their main characteristic is the highly three-dimensional development of the flow. Consequently, usual approach for axial or centrifugal compressors design are not an affordable strategy. The analysis of the rotor/stator coupling is the main issue in the design of regenerative compressors because of the vane-less nature of the stator and the characteristic trajectory of the flow. This paper describes the design of an efficient regenerative compressor based on a highly detailed Reynolds Averaged Navier-Stokes (RANS) analysis. The targets of the activity are defined in terms of expected mass-flow, pressure rise and compressor efficiency, and then a preliminary design is performed using an in-house mono-dimensional tool based on simplified assumptions for the nominal operating conditions. Once the model provided the most promising geometrical characteristics for the target operating point, three-dimensional steady RANS analyses are performed to evaluate the actual performance of the compressor for a wide range of mass-flow values. Special attention has been paid to the generation of the computational mesh and a specific solution for the rotor row has been developed. Compressibility effects are non-negligible since the flow Mach number is higher than 0.5 in several compressor sections, including the leakage zone regions where the losses are higher. The rotor and the full compressor efficiencies are evaluated and discussed to underline the importance of the rotor/volute coupling. The flow behaviour inside of the volute as well as the distribution of losses is also discussed and some guidelines for the efficient design of regenerative compressors are presented

    Use of Sawing Waste from Zeolitic Tuffs in the Manufacture of Ceramics

    Get PDF
    This paper investigates the thermal transformation of powders of volcanic tuffs that are used as building stones and aims at thermally transforming them into ceramics. The following positive indications concerning this thermal transformation were found: (1) the structural evolution which brings products similar to traditional ceramics, (2) the good ability to give rise to dense and compact final products, and (3) the good mechanical properties and the lovely appearance of the final products. Nevertheless, the high values of linear shrinkages recorded in this work seem to strongly hinder the thermal transformation of this powder-like waste into ceramics. However, mixing this by-product with other powder-like waste exhibiting higher-dimensional stability, such as those deriving from sawing of granites, appears proper
    corecore