411 research outputs found

    Nutrient Cycling in the Mediterranean Sea: The Key to Understanding How the Unique Marine Ecosystem Functions and Responds to Anthropogenic Pressures

    Get PDF
    The Mediterranean Sea is a marine desert: although it receives large nutrient inputs from a rapidly growing coastal population, its offshore waters exhibit extremely low biological productivity. Here, we use a mass balance modelling approach to analyse the sources and fate of the two main nutrients that support marine biomass production: phosphorus (P) and nitrogen (N). Surprisingly, the main source of P and N to the Mediterranean Sea is North Atlantic surface water entering through the Strait of Gibraltar, not emissions from surrounding land. The low biological productivity of the Mediterranean Sea is linked to the switch from less bioavailable nutrients entering the basin to highly bioavailable nutrients leaving it although similar amounts of total P and N enter and leave the Mediterranean Sea. This unique feature is a direct consequence of its unusual anti-estuarine circulation. An important environmental implication of the anti-estuarine circulation is that it efficiently removes excess anthropogenic nutrients entering the Mediterranean Sea, thus protecting offshore waters against eutrophication contrary to other semi-enclosed marine basins. In a similar vein, the “self-cleaning” nature of the Mediterranean Sea may prevent severe oxygen depletion of Mediterranean deep waters should ongoing climate warming lead to a weakening of the thermohaline circulation

    Can urban growth reduce rural underemployment?

    Get PDF
    In a recent IFPRI working paper, Van Cappellen and De Weerdt (2023), we show how urban growth reduces underemployment in the rural hinterlands of towns and cities. But leveraging these labor market linkages between urban and rural areas for inclusive growth and poverty reduction will depend on overcoming two barriers. The first is that the jobs created are primarily low-skill, low productivity, and often casual (ganyu). Raising the human capital and productivity of the continually growing pool of rural workers, while simultaneously raising rural incomes to increase demand for the kind of off-farm goods and services they can provide, will be critical. Secondly, the labor market linkages between urban and rural areas operate primarily through the longer-established urban areas. Growth in Malawi’s newer emerging urban centers, while substantial, has not spilled over to rural labor markets yet. This is a missed opportunity and highlights the need for a geographically expansive urban investment strategy that includes fostering growth, agglomeration economies, and strong urban-rural linkages in Malawi’s smaller urban areas. Anchoring the development of smaller urban agglomerations in modernizing value chains, particularly in the agri-food sector, is one practical pathway for leveraging urbanization for inclusive development

    Direct Discharges of Domestic Wastewater are a Major Source of Phosphorus and Nitrogen to the Mediterranean Sea

    Get PDF
    Direct discharges of treated and untreated wastewater are important sources of nutrients to coastal marine ecosystems and contribute to their eutrophication. Here, we estimate the spatially distributed annual inputs of phosphorus (P) and nitrogen (N) associated with direct domestic wastewater discharges from coastal cities to the Mediterranean Sea (MS). According to our best estimates, in 2003 these inputs amounted to 0.9 × 10âč mol P yr-1 and 15 × 10âč mol N yr-1, that is, values on the same order of magnitude as riverine inputs of P and N to the MS. By 2050, in the absence of any mitigation, population growth plus higher per capita protein intake and increased connectivity to the sewer system are projected to increase P inputs to the MS via direct wastewater discharges by 254, 163, and 32% for South, East, and North Mediterranean countries, respectively. Complete conversion to tertiary wastewater treatment would reduce the 2050 inputs to below their 2003 levels, but at an estimated additional cost of over €2 billion yr-1. Management of coastal eutrophication may be best achieved by targeting tertiary treatment upgrades to the most affected near-shore areas, while simultaneously implementing legislation limiting P in detergents and increasing wastewater reuse across the entire basin

    Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends

    Get PDF
    Microtubule (MT) plus end–tracking proteins (+TIPs) specifically recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms underlying plus end specificity of mammalian +TIPs are not completely understood. Cytoplasmic linker protein 170 (CLIP-170), the prototype +TIP, was proposed to bind to MT ends with high affinity, possibly by copolymerization with tubulin, and to dissociate seconds later. However, using fluorescence-based approaches, we show that two +TIPs, CLIP-170 and end-binding protein 3 (EB3), turn over rapidly on MT ends. Diffusion of CLIP-170 and EB3 appears to be rate limiting for their binding to MT plus ends. We also report that the ends of growing MTs contain a surplus of sites to which CLIP-170 binds with relatively low affinity. We propose that the observed loss of fluorescent +TIPs at plus ends does not reflect the behavior of single molecules but is a result of overall structural changes of the MT end

    Social information processing, normative beliefs about aggression and parenting in children with mild intellectual disabilities and aggressive behavior

    Get PDF
    Background High levels of aggressive behavior in children with mild intellectual disabilities to borderline intellectual functioning (MID-BIF) are associated with deviant social information processing (SIP) steps. The current study investigated deviant SIP as a mediating mechanism linking both children’s normative beliefs about aggression and parenting to aggressive behavior in children with MID-BIF. Additionally, the mediating role of normative beliefs about aggression in linking parenting and deviant SIP was investigated. Methods 140 children with MID-BIF in community care in the Netherlands, their parent(s) or caretaker(s), and their teacher participated in this cross-sectional study. Structural equation modeling was performed to test mediations. Models were run separately for parent and teacher reports of aggression, and included three deviant SIP steps (interpretation, response generation, response selection). Results A total indirect effect through deviant SIP steps was found from normative beliefs about aggression to teacher-reported aggression, but not to parent-reported aggression. An indirect effect was found from positive parenting through normative beliefs about aggression to deviant SIP. Conclusion The results of this study suggest that, next to deviant SIP and parenting, normative beliefs about aggression may be a relevant intervention target for children with MID-BIF and aggressive behavior

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e

    Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden

    Get PDF
    Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 ÎŒm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
    • 

    corecore