562 research outputs found

    MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    Get PDF
    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protei

    A neural model of valuation and information virality

    Get PDF
    Information sharing is an integral part of human interaction that serves to build social relationships and affects attitudes and behaviors in individuals and large groups. We present a unifying neurocognitive framework of mechanisms underlying information sharing at scale (virality). We argue that expectations regarding self-related and social consequences of sharing (e.g., in the form of potential for self-enhancement or social approval) are integrated into a domain-general value signal that encodes the value of sharing a piece of information. This value signal translates into population-level virality. In two studies (n = 41 and 39 participants), we tested these hypotheses using functional neuroimaging. Neural activity in response to 80 New York Times articles was observed in theory-driven regions of interest associated with value, self, and social cognitions. This activity then was linked to objectively logged population-level data encompassing n = 117,611 internet shares of the articles. In both studies, activity in neural regions associated with self-related and social cognition was indirectly related to population-level sharing through increased neural activation in the brain’s value system. Neural activity further predicted populationlevel outcomes over and above the variance explained by article characteristics and commonly used self-report measures of sharing intentions. This parsimonious framework may help advance theory, improve predictive models, and inform new approaches to effective intervention. More broadly, these data shed light on the core functions of sharing—to express ourselves in positive ways and to strengthen our social bonds

    Search for double beta decay of 136^{136}Ce and 138^{138}Ce with HPGe gamma detector

    Full text link
    Search for double β\beta decay of 136^{136}Ce and 138^{138}Ce was realized with 732 g of deeply purified cerium oxide sample measured over 1900 h with the help of an ultra-low background HPGe γ\gamma detector with a volume of 465 cm3^3 at the STELLA facility of the Gran Sasso National Laboratories of the INFN (Italy). New improved half-life limits on double beta processes in the cerium isotopes were set at the level of limT1/210171018\lim T_{1/2}\sim 10^{17}-10^{18}~yr; many of them are even two orders of magnitude larger than the best previous results.Comment: 21 pages, 6 figures, 3 tables; version accepted for publication on Nucl. Phys.

    New limits on 2ε2\varepsilon, εβ+\varepsilon\beta^+ and 2β+2\beta^+ decay of 136^{136}Ce and 138^{138}Ce with deeply purified cerium sample

    Full text link
    A search for double electron capture (2ε2\varepsilon), electron capture with positron emission (εβ+\varepsilon\beta^+), and double positron emission 2β+2\beta^+) in 136^{136}Ce and 138^{138}Ce was realized with a 465 cm3^3 ultra-low background HP Ge γ\gamma spectrometer over 2299 h at the Gran Sasso underground laboratory. A 627 g sample of cerium oxide deeply purified by liquid-liquid extraction method was used as a source of γ\gamma quanta expected in double β\beta decay of the cerium isotopes. New improved half-life limits were set on different modes and channels of double β\beta decay of 136^{136}Ce and 138^{138}Ce at the level of T1/2>10171018T_{1/2}>10^{17}-10^{18} yr.Comment: 19 pages, 6 figures, 2 table

    On electromagnetic contributions in WIMP quests

    Get PDF
    The effect pointed out by A. B. Migdal in the 40's (hereafter named Migdal effect) has so far been usually neglected in the direct searches for WIMP Dark Matter candidates. This effect consists in the ionization and the excitation of bound atomic electrons induced by the recoiling atomic nucleus. In the present paper the related theoretical arguments are developed and some consequences of the proper accounting for this effect are discussed by some examples of practical interest.Comment: 14 pages, 6 figures, 2 tables, Int. J. Mod. Phys. A (in publication

    The Building Blocks of Interoperability. A Multisite Analysis of Patient Demographic Attributes Available for Matching.

    Get PDF
    BackgroundPatient matching is a key barrier to achieving interoperability. Patient demographic elements must be consistently collected over time and region to be valuable elements for patient matching.ObjectivesWe sought to determine what patient demographic attributes are collected at multiple institutions in the United States and see how their availability changes over time and across clinical sites.MethodsWe compiled a list of 36 demographic elements that stakeholders previously identified as essential patient demographic attributes that should be collected for the purpose of linking patient records. We studied a convenience sample of 9 health care systems from geographically distinct sites around the country. We identified changes in the availability of individual patient demographic attributes over time and across clinical sites.ResultsSeveral attributes were consistently available over the study period (2005-2014) including last name (99.96%), first name (99.95%), date of birth (98.82%), gender/sex (99.73%), postal code (94.71%), and full street address (94.65%). Other attributes changed significantly from 2005-2014: Social security number (SSN) availability declined from 83.3% to 50.44% (p<0.0001). Email address availability increased from 8.94% up to 54% availability (p<0.0001). Work phone number increased from 20.61% to 52.33% (p<0.0001).ConclusionsOverall, first name, last name, date of birth, gender/sex and address were widely collected across institutional sites and over time. Availability of emerging attributes such as email and phone numbers are increasing while SSN use is declining. Understanding the relative availability of patient attributes can inform strategies for optimal matching in healthcare

    Investigating pseudoscalar and scalar dark matter

    Get PDF
    In this paper another class of Dark Matter candidate particles: the pseudoscalar and scalar light bosonic candidates, is discussed. Particular care is devoted to the study of the processes for their detection (which only involves electrons and photons/X-rays) in a suitable underground experimental set-up. For this purpose the needed calculations are developed and various related aspects and phenomenologies are discussed. In particular, it is shown that - in addition to the WIMP cases already discussed elsewhere - there is also possibility for a bosonic candidate to account for the 6.3 sigma C.L. model independent evidence for the presence of a particle DM component in the galactic halo observed by DAMA/NaI. Allowed regions in these scenarios are presented also paying particular care on the cosmological interest of the bosonic candidate.Comment: 23 pages, 6 figures, 1 table, Int. J. Mod. Phys. A (in press

    Radioactive contamination of ZnWO4 crystal scintillators

    Full text link
    The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shape analyses of the data have been applied to estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4 crystals has also been tested by ultra-low background gamma spectrometry. The radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8 mBq/kg (depending on the radionuclide), the total alpha activity is in the range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha active 180W, has been detected. The effect of the re-crystallization on the radiopurity of the ZnWO4 crystal has been studied. The radioactive contamination of samples of the ceramic details of the set-ups used in the crystals growth has been checked by low background gamma spectrometry. A project scheme on further improvement of the radiopurity level of the ZnWO4 crystal scintillators is briefly addressed.Comment: 15 pages, 8 figures, 6 tables, submitted for publicatio
    corecore