2,855 research outputs found

    Wind tunnel/flight data correlation for the Boeing 737-100 transport airplane

    Get PDF
    A brief wind-tunnel/flight data correlation for the Boeing 737-100 airplane was made. The results showed excellent agreement between wind-tunnel and flight trimmed drag polars at Mach numbers less than 0.67. The wind-tunnel data predicted larger drag increments due to compressibility and a lift-curve slope about 9 percent higher than flight

    An investigation of a close-coupled canard as a direct side-force generator on a fighter model at Mach numbers from 0.40 to 0.90

    Get PDF
    The canard panels had 5 deg of dihedral and were deflected differentially or individually over an incidence range from 10 deg to -10 deg and a model angle-of-attack range from -4 deg to 15 deg. Significant side forces were generated in a transonic tunnel by differential and single canard-panel deflections over the Mach number and angle-of-attack ranges. The yawing moment resulting from the forward location of the generated side force would necessitate a vertical tail/rudder trim force which would augment the forebody side force and be of comparable magnitude. Incremental side forces, yawing moments, lift, and pitching moments due to single canard-panel deflections were additive; that is, their sums were essentially the same as the forces and moments produced by differential canard-panel deflections of the same magnitude. Differential and single canard-panel deflections produced negligible rolling moments over the Mach number and angle-of-attack ranges

    Performance of twin two-dimensional wedge nozzles including thrust vectoring and reversing effects at speeds up to Mach 2.20

    Get PDF
    Transonic tunnel and supersonic pressure tunnel tests were reformed to determine the performance characteristics of twin nonaxisymmetric or two-dimensional nozzles with fixed shrouds and variable-geometry wedges. The effects of thrust vectoring, reversing, and installation of various tails were also studied. The investigation was conducted statically and at flight speeds up to a Mach number of 2.20. The total pressure ratio of the simulated jet exhaust was varied up to approximately 26 depending on Mach number. The Reynolds number per meter varied up to 13.20 x 1 million. An analytical study was made to determine the effect on calculated wave drag by varying the mathematical model used to simulate nozzle jet-exhaust plume

    Aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed with forward-swept wings and canards

    Get PDF
    The Langley 16 foot transonic tunnel was used to determine the aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed in a wing-body configuration with forward-swept wings. The configuration was tested with and without fixed canards. The test conditions included free-stream Mach numbers of 0.60, 0.90, and 1.20. The model angle of attack ranged from -2 deg to 14 deg; the nozzle pressure ratio ranged from 1.0 (jet off) to 9.0. The Reynolds number based on the wing mean aerodynamic chord varied from 3.0 x 10 to the 6th power to 4.8 x 10 to the 6th power, depending on Mach number. Aerodynamic characteristics were analyzed to determine the effects of thrust vectoring and the canard effects on the wing-afterbody-nozzle and the wing-afterbody portions of the model. Thrust vectoring had no effect on the angle of attack for the onset of flow separation on the wing but resulted in reduced drag at angle-of-attack values above that required for wing flow separation. The canard was found to have little effect on the thrust-induced lift resulting from vectoring, since canard effects occurred primarily on the wing

    Interference effects of thrust reversing on horizontal tail effectiveness of twin-engine fighter aircraft at Mach numbers from 0.15 to 0.90

    Get PDF
    An investigation was conducted in the Langley 16 foot Transonic Tunnel to determine the interference effects of thrust reversing on horizontal tail effectiveness of a twin engine, general research fighter model at approach and in-flight speeds. Twin vertical tails at three longitudinal locations were tested at a cant angle of 0 deg. One configuration was also tested at a cant angle of 20 deg. Two nonaxisymmetric nozzle reverser concepts were studied. Test data were obtained at Mach numbers of 0.15, 0.60, and 0.90 and at angles of attack from -3 to 9 deg. Nozzle pressure ratios varied from jet off to 7.0, depending upon Mach number. At landing approach speed (Mach number 0.15), thrust reverser operation usually resulted in large variations (up to 70% increase) in horizontal tail effectiveness as nozzle pressure ratio was varied at zero angle of attack or as angle of attack was varied at constant nozzle pressure ratio. There was always a decrease in effectiveness at Mach numbers of 0.60 and 0.90 as a result of reverser operation

    Effect of port corner geometry on the internal performance of a rotating-vane-type thrust reverser

    Get PDF
    An investigation has been conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the effects of reverser port geometry on the internal performance of a nonaxisymmetric rotating-vane-type thrust reverser. Thrust reverser vane positions representing a spoiled-trust (partially deployed) position and a full-reverse-thrust (fully deployed) position were tested with each port geometry variable. The effects of upstream port corner radius and wall angle on internal performance were determined. In addition, the effect of the length of a simulated cooling liner (blunt-base step) near the reverser port entrance was investigated; five different lengths were tested. All tests were conducted with no external flows, and nozzle pressure ratio was varied from 1.2 to 5.0

    Introduction

    Get PDF
    The predicted expansion of international law ultimately resulted in the imposition on States of several and far reaching obligations to criminalise certain offences, in order to, inter alia, uniform States’ criminal law framework to the maximum extent possible. The aim of the special issue is to provide a forum to discuss the many and multifaceted aspects connected to obligations of domestic criminalisation, using Italy as a case study. The special issue is divided in three sections, addressing, respectively, broad issues of general application, Italy’s implementation of obligations to criminalise conducts amounting to international crimes, and further ambits of analysis (i.e. gender based violence, cyber crimes against minors and corruption)

    Effect of thrust vectoring and wing maneuver devices on transonic aeropropulsive characteristics of a supersonic fighter

    Get PDF
    The aeropropulsive characteristics of an advanced fighter designed for supersonic cruise were determined in the Langley 16-Foot Transonic Tunnel. The objectives of this investigation were to evaluate the interactive effects of thrust vectoring and wing maneuver devices on lift and drag and to determine trim characteristics. The wing maneuver devices consisted of a drooped leading edge and a trailing-edge flap. Thrust vectoring was accomplished with two dimensional (nonaxisymmetric) convergent-divergent nozzles located below the wing in two single-engine podded nacelles. A canard was utilized for trim. Thrust vector angles of 0 deg, 15 deg, and 30 deg were tested in combination with a drooped wing leading edge and with wing trailing-edge flap deflections up to 30 deg. This investigation was conducted at Mach numbers from 0.60 to 1.20, at angles of attack from 0 deg to 20 deg, and at nozzle pressure ratios from about 1 (jet off) to 10. Reynolds number based on mean aerodynamic chord varied from 9.24 x 10 to the 6th to 10.56 x 10 to the 6th

    Aerodynamic Characteristics of a Supersonic Fighter Aircraft Model at Mach 0.40 to 2.47

    Get PDF
    The aerodynamic characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Transonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective of this investigation was to establish an aerodynamic data base for the configuration with flow-through nacelles and representative inlets. The use of a canard for trim and the effects of fairing over the inlets were assessed. Comparisons between experimental and theoretical results were also made. The theoretical results were determined by using a potential vortex lift code for subsonic speeds and a linear aerodynamic code for supersonic speeds. This investigation was conducted at Mach numbers from 0.40 to 2.47, at angles of attack from 0 deg to about 20 deg, and at inlet capture ratios of about 0.5 to 1.4
    • …
    corecore