NASA TECHNICAL Memorandum

WIND TUNNEL/FLIGHT DATA CORRELATION FOR THE BOEING 737-100 TRANSPORT AIRPLANE

By FRANCIS J. CAPONE

August 1975

(NASA-TM-X-72715) WIND TUNNFL/TLIGHT DATA N75-31051 COPPELATION FOR THE ECEING 737-100 TRANSPORT AIPPLANE (NASA) 18 p HC \$3.25 CSCL 010

> Unclas 63/05 35262

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

> NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

MASA 78 X. 72715

(Art -

https://ntrs.nasa.gov/search.jsp?R=19750022978 2020-03-11T19:24:22+00:00Z

NASA TM X-72715

. Report No.	2. Government Access	on No.	3. Recipient's Causiog	No.
NASA TM X-72715				
I. Title and Subtitle			5. Report Date	
Wind Tunnel/Flight Dat	the	August 1975	the Code	
Boeing 737-100 Transpo	Line	6. Performing Organiza	ar co Coce	
. Author(s)			8. Pertorminė Organiza	non Report No.
Francis J. Capone	-	0. Work Unit No.		
). Performing Organization Name and Add		505-04-11-0)1	
NASA Langley Research	Γ	1. Contract de Grant I	No.	
Hampton, Virginia 236				
			3. Type of Report and	d Period Covered
2. Sponsdring Agency Name and Address			echnical Memo	randum
National Aeronautics a Washington, DC 20546	nd Space Administ	ration	4. Sponsoring Agency	Code
5. Supplementary Notes	······································			
Special Technical Info formal NASA publicatio	rmation Release, n	not planned for		
6. Abstract A brief wind-tunn airplane has been made TN D-5971. The result	el/flight data co The wind-tu.me s showed excellen	rrelat: Jn for th data were publ t agreement betw	e Boeing 737- ished in NASA ween wind-tunn	-100 A nel and
A brief wind-tunn airplane has been made TN D-5971. The result flight trimmed drag po tunnel dat. predicted a lift-curve slope abo	el/flight data co The wind-tu.ne s showed excellen lars at Mach numb larger drag incre out 9 percent high	errelat: Jn for the data were public agreement betw ers less than 0. ments due to con er than flight.	e Boeing 737- ished in NASA ween wind-tunn 67. The wir pressibility	-100 Mel and Md- and
 A brief wind-tunn airplane has been made TN D-5971. The result flight trimmed drag po tunnel dat. predicted a lift-curve slope abo 17. Key Words (Suggester by Author(s)) <u>Aerodynamics</u> Subsonic Transport Wind Tunnel Data Flight Data 	el/flight data co The wind-tuine s showed excellen lars at Mach numb larger drag incre out 9 percent high (STAR category underlined)	rrelat: on for the data were public agreement betw ers less than 0. ments due to conter than flight.	e Boeing 737- ished in NASA ween wind-tunn 67. The win pressibility	-100 A hel and hd- and
 A brief wind-tunn airplane has been made TN D-5971. The result flight trimmed drag po tunnel dat. predicted a lift-curve slope abo 17. Key Word (Suggester by Author(s)) <u>Aerodynamics</u> Subsonic Transport Wind Tunnel Data Flight Data 19. Security Cashi. (o: this report) 	el/flight data co The wind-tu.ne s showed excellen lars at Mach numb larger drag incre out 9 percent high (STAR category underlined) 20. Security Clearif.	 at a were public agreement betweers less than 0. at a ments due to conter than flight. 18. Distribution Statement Unclassified Unlimited and this page) 	21. No. of Pages	-100 hel and hd- aud 22. Price*

1

-1

.

5 1. 2. .

1 10

ŧ,

ł

*Available from STIF/NASA Scientific and Technical Information Facility, P.O. Box 33, College Park, 14D 20740

SUMMARY

۰.

.

اللغ

A brief wind-tunnel/flight data correlation for the Boeing 737-100 airplane has been made. The wind-tunnel data were published in NASA TN D-5971. The results showed excellent agreement between wind-tunnel and flight trimmed drag polars at Mach numbers less than 0.67. The windtunnel data predicted larger drag increments due to compressibility and a lift-curve slope about 9 percent higher than flight.

INTRODUCTION

The National Aeronautics and Space Administration and the Boeing Company conducted a cooperative wind-tunnel/flight data correlation program for the Boeing 737-100 transport airplane during January 1968. The 737 airplane is a twin-turbofan, short-haul, subsonic transport capable of carrying about 100 passengers. The results of the wind-tunnel study conducted in the Langley 16-foot transonic tunnel are presented in reference 1. A correlation of this wind-tunnel data with the flight data supplied at that time by the Boeing Company was made but not published because an adequate analysis to account for the known differences between the airplane and wind-tunnel model was not made. In 1973, the Langley Research Center purchased a Boeing 737-100 airplane in order to conduct a variety of flight research programs including wind tunnel/flight correlations. Because of this recent acquisition, it now becomes appropriate to document the brief wind-tunnel/flight data correlation mentioned above.

SYMBOLS

N

Model forces and moments were referred to a stability axis system with the model moment reference center located 82.80 centimeters rearward of the model nose corresponding to 22.4 percent of the wing mean aerodynamic chord which was approximately at the nominal center-of-gravity position of the airplane.

A	aspect ratio
A w	wetted area
b	span .
Ē	wing mean aerodynamic chord
с _D	drag coefiicient, Drag qS
(C _{D,f}) _F	computed flight skin-friction drag coefficient
(C _{D,f}) _{F,av}	average computed flight skin-friction drag coefficient
(C _{D,f}) _{W.T.}	computed wind-tunnel skin-friction drag coefficient
C _{D,trim}	trim drag coefficient
с _г	lift coefficient, Lift qS
^C L,trim	trim lift coefficient
c _{Lα}	lift-curve slope per degree
ΔC _{D,f}	$(C_{D,f})_{W.T.} - (C_{D,f})_{F,av}$

ΔC _{D,M}	drag-coefficient increment due to compressibility $\begin{bmatrix} C_n \end{bmatrix}_M = \begin{bmatrix} C_n \end{bmatrix}_M = 0.55$
Н	altitude
^l ref	reference length
M	free-stream Mach number
Mav	average free-stream Mach number
₽ _∞	free-stream static pressure
q	free-stream dynamic pressure
R	Reynolds number based on c
R _{av}	average Reynolds number
R _N	Reynolds number per meter
S	wing reference area
T _t	stagnation temperature
W	airplane mass
δ	static-pressure correction parameter for correction to standard
	sea-level conditions ($p_{\infty}/101325$)
δ _h	incidence angle of horizontal tail, positive when trailing
	edge is down

MODEL AND AIRPLANE

A sketch of the 737 airplane is shown in figure 1. The airplane is a twin-turbofan, short-haul, subsonic transport weighing about 45000 kilograms, capable of carrying about 100 passengers at a cruise Mach number between 0.78 and 0.80.

Complete details of the 0.062-scale model can be found in concrease 1. The model-component designation of reference 1 will also be used and, for this correlation, data for configuration BW_1 HVN₁ T will be presented. Photographs of the wind-tunnel model are given in figure 2.

The following known differences existed between the model and simplane. The airplane had open landing gear wells, that is, there were no panels covering the landing gear. The model fuselage was constructed wirk a smooth underside and no attempt was made to simulate the open landing wells with the gear in it. An auxiliary power unit exhaust located at the end of the afrplane fuselage was not simulated. For the wind-tunnel model, the macelle inlet velocity ratio was matched to the airplane. As a result, the model nacelle exit area was larger than the equivalent scaled airplane nozed of area. Because of this difference in nacelle exit area, the model nacelle afterbody boattail angle was 7° whereas the airplane boattail angle was 10.9°. No allowance was made on the wind-tunnel model for wing twist due to aeroelastic effects. The wing twist under flight conditions was estimated by Boeing to be 1 to 1.5°.

ADJUSTMENTS TO DATA

The wind-tunnel data of reference 1 have been adjusted for nacelle internal axial force and support interference effects. No other adjustments were made to these data. The wind-tunnel trimmed drag polars from reference 1, (figure 17 (d)) are presented herein as figure 3.

Flight test results were supplied by the Boeing Company. These flight data as supplied were reduced with a reference area of $0.349m^2$ model scale. These results were then adjusted to the wind tunnel reference area of $0.367m^2$. A trailing cone was used to determine airplane Mach number. A drag coefficient of 0.0003 (measured with "fish scale" type balance) was subtracted from the flight drag coefficients to account for the drag of the trailing cone. These drag coefficients along with other pertinent flight measurements and conditions are presented in Table I.

Skin-friction drag coefficients were computed at wind tunnel and flight conditions using the method of reference 2. Information required for these computations are presented in Tables I to III. The flight drag coefficients have been adjusted to the average skin-friction drag coefficient (Table I) and are also presented in Table 1, and in figure 4 (identified with symbols). Average flight skin-friction drag coefficients (Table I) were plotted versus Mach number and values of $(C_{D,f})_{F,av}$ were read off the plot at the Mach numbers at which wind tunnel data were obtained. The difference between the wind tunnel skin-friction drag coefficient and these values was then subtracted from the wind-tunnel drag polars. This incremental skin-friction drag coefficient is also presented in Table 11).

An adjustment is made to the skin-friction drag coefficients to account for thickness effects (ref. 3) u ing a form factor of 1.18 for the entire configuration (ref. 1). This adjustment increases the $\Delta C_{D,f}$ increments of Table III by 0.0009. A value for excrescence or roughness drag coefficient (ref. 3) of 0.0018 was obtained from the Boeing Company and has also been added to the trimmed wind-tunnel drag polars. These final adjusted trimmed

wind-tunnel drag polars (adjusted for skin-friction, thickness and roughness effects) are presented in figure 4 by the dashed lines.

SUMMARY OF RESULTS

Comparisons of adjusted wind tunnel and adjusted flight drag polars are presented in figure 4. There is excellent agreement at M = 0.596 and 0.672. However, there are larger differences between the adjusted windtunnel and flight drag polars at the higher Mach numbers.

A comparison of flight and wind-tunnel compressibility drag rise characteristics is presented in figure 5. The wind-tunnel data shows the drag rise to occur earlier than the flight data and also predicts larger drag increments due to compressibility effects.

A comparison of flight and wind-tunnel (figure 17(a), ref. 1) liftcurve slopes is given in figure 6. The wind-tunnel lift-curve slopes are about 9 percent higher than flight determined values.

REFERENCES

ALC: BALL

1

のたちをないていたいというというというというできたというというという

as in

<u>ب</u>

- Capone, Francis J.: Longitudinal Aerodynamic Characteristics of a Twin-Turbofan Subsonic Transport With Nacelles Mounted Under the Wings. NASA TN D-5971, 1970.
- Sommer, Simon C.; and Short, Barbara J.: Free-Flight Measurements of Turbulent-Boundary-Layer Skin Friction in the Presence of Severe Aerodynamic Heating at Mach Numbers From 2.8 to 7.0. NACA TN-3391, 1955.
- Brown, Clinton E.; and Chen, Chuan Fang: An Analysis of Performance Estimation Methods for Aircraft. NASA CR-921, 1967.

7

P

TABLE I. - TABULATED FLIGHT DATA

1

2.1

<u>у</u>в 11

1

•

-

ł

1

ភ្លេស ភ្លេស ក្រុស ភ្លេស ភ្លេស ភ្លេស ភ្លេស ភ្លេស ភ្លេស ភ្លេស	21.8 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6		55.55 55.555
113.4 86.0 68.0 1345.0 1345.0 1345.0	113.4 156.9 90.3 90.3 135.2 90.3 135.2	158.6 17.7 11.7 90.5 11.0 60.5 111.0 67.6	N M (14) CODE - 1 CODE - 1
37.19 35.02 32.84 32.11 32.11	37.47 40.14 39.33 37.19 31.93 31.93	41.15 38.95 40.55 28.93 28.93 28.93 28.93	
.0278 .0246 .0223 .0229 .0209	.0245 .0297 .0263 .0226 .0226 .0210	.0281 .0256 .0232 .0219 .0304 .0304	.0320 .0282 .0253 .0254
.0127	.012 ⁴	•012ħ	•0124
.0130 .0128 .0125 .0125 .0132	.0126 .0131 .0128 .0124 .0124 .0121	.0127 .0126 .0124 .0122 .0130 .0123	3110. 0270. 5210. 1210.
0.0281 .0247 .0221 .0222 .0315	0.024T .0302 .0267 .0226 .0226 .0208	0.0284 .0258 .0232 .0232 .0232 .0236 .0236	0.0324 .0285 .0285 .0255
0.464 .365 .275 .185 .550	0.357 .516 .427 .290 .217 .144	0.420 .371 .298 .298 .490 .292	
6.01 6.86 6.86 8.05 10.72 5.46	6.89 5.57 6.26 8.04 9.42 9.42	6.26 6.68 6.68 7.63 8.50 5.61 7.75 10.43	5.0 5.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
8458 7272 5761 2735 9246	3427 10128 9278 6883 5347 2842	10045 9387 8288 7230 7230 10903 8185 5240	10837 10121 9137 9137
av 0.596	0.672	6.736	
6.594 .597 .599 .599	0.6678 0.6678 0.6677 0.6773 0.6773 0.6773 0.6773 0.6773 0.6775 0.6775 0.6775 0.6775 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.6776 0.7677 0.77777 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.77770 0.777700000000	0.736 .731 .770 .770 .770 .770 .770 .770 .770	to to the second
00000	000000	000000	ববববব
	av av 0 0.594 0.596 8458 6.01 0.464 0.0281 .0130 .0127 .0278 37.19 113.4 21.8 0 597 7272 6.86 .365 .0247 .0128 .0246 35.02 99.8 22.9 0 5761 8.05 .275 .0221 .0125 .0223 32.84 68.0 21.6 0 5761 8.05 .275 .0202 .0120 .0125 .0223 32.84 68.0 21.6 0 .599 2765 10.72 .185 .0202 .0120 .0120 .0223 32.84 68.0 21.6 0 .599 2785 10.72 .185 .0202 .0120 .0223 32.711 45.4 22.5 0 .595 .0202 .0120 .0122 .0120 .0210 .0210 .0216 134.7 22.5 0 .595 .0132 .0132 <th>av av av<</th> <th>AV 5 C C S</th>	av av<	AV 5 C C S

8

Ave.C.G. in Maac	22.8 23.5 22.4 21.9	23.6 22.3 22.3	23.3 22.0 22.6
w/6 x 10 ⁻³	159.2 136.1 112.5 88.9 67.6	135.6 113.8 89.8	67.6 68.5 159.2
ч kg. x 10 ⁻ 3	41.55 39.87 38.42 35.70 35.38	40.50 38.83 36.47	34.11 32.57 41.87
Adjusted C _D	.0293 .0265 .0244 .0222 .0222	.0292 .0269 .0245	
(CD,f)F,av	.0122	1210.	
(^C D, f)F	.0126 .0124 .0122 .0122 .0120 .0116	.0123 .0122. .0119	.0132 .0129 .0125
сD	0.0297 .0267 .0244 .0212	0.0294 .0270 .0243	0.0320 .0257 .0315
cr	0.381 .328 .272 .216 .165	0.306 .256 .204	0.550 .404 .370
R _N x 10-6	6.63 7.21 8.05 9.07 11.24	7.54 8.34 9.46	5.86 6.60 6.76
Н, п	10000 9237 8198 7082 4950	9116 8204 6 983	5412 5838 9948
Mav	0.774	0.800	
×	0.777 0.776 .776 .773 .773 .773	0.801 108.0 798	0.421 .495 .788
Symbol	20202	ممم	

.₽.

TABLE I. - TABULATED FLIGHT DATA (CONT'D)

:•

ŕ.

÷.

•

 $\frac{1}{1}$

N. 27. ļ

;

1

ł

l

9

t

I

i

TABLE II. - REFERENCE DIMENSIONS, WETTED AREAS AND REFERENCE LENGTHS

i t

٠

.

٠

(a) Reference dimensions

	Model	Airplane
ې بې ۹ ۹ ۹ ۹	014.8 0361 037.1 036.0	14.8 25.32 14.5 26.32

(b) Wetted areas and reference lengths

	Mode	el	Airpl	ane
Component	А ч, ,	^l ref m	A BE	ref Tef
Fuselage and wing-root flap track fairing Wing Horizontal tails Vertical tail Pylons Macelles Cutboard flap track fairings	1.026 .573 .573 .182 .182 .021 .148 .02€	1.712 1.712 .195 .143 .344 .345 .345 .345	266.81 149.10 149.10 142.92 5.57 38.46 6.69	2.61 8.62 8.63 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65

-

•

.W

¥

Į

TABLE III. - WIND TUNNEL AND FLIGHT REYNOLDS NUMBER AND SKIN FRICTICT

٠

.

٠

٠

8
FRICTI
SKIN
INCREMENTAL
COEFFICIENTS;

٠

1

:

٠

· •

.

.

Ì

-t

		^{∆C} D,f	.0048		6400.		.0048		.6047		9400.	.0049		
Flight		(C _{D,f}) _{F,av}		0.0127		4210.		.0124	.0124	.0122		.0121		
	Rav	x 10 ⁶		25.30		27.43		25.75	26.58	28.78		28.80		
		(C _{D,f})W,T.	0.0179		.0175		.0172		.0171		.0170	.0170	.0169	.0168
Wind Tunnel	Ł	x 10 ⁻⁶	2.248		2.403		2.528		2.568		2.593	2.625	2.646	2.701
	T _t ,	Хо	301		307		315		323		322	316	355	325
		Σ	0.550	.596	.625	.672	.725	.736	.750	. 774	.775	•603.	.825	.850

R based on wing C

د .

ŧ

....

|*

ORIGINAL PAGE IS OF POOR QUALITY

•?

ł

No.

\$\$

185 1910 - 1869

きます

Figure 3. - Wind *::nnel trimmed drag polars. Symbols represent trim points.

ĭ

1×.,

.;

ないのないのであるのである

ام^ا

Figure 5. - Comparison of flight and wind tunnel compressibility drag rise characteristics.

1. Star Strand Bring Strand

Figure 6. - Comparison of 11ft curve slopes.

14

در.