119 research outputs found

    Marcatili's Lossless Tapers and Bends: an Apparent Paradox and its Solution

    Get PDF
    Numerical results based on an extended BPM algorithm indicate that, in Marcatili's lossless tapers and bends, through-flowing waves are drastically different from standing waves. The source of this surprising behavior is inherent in Maxwell's equations. Indeed, if the magnetic field is correctly derived from the electric one, and the Poynting vector is calculated, then the analytical results are reconciled with the numerical ones. Similar considerations are shown to apply to Gaussian beams in free space.Comment: 4 pages, figures include

    Main Lobe Control of a Beam Tilting Antenna Array Laid on a Deformable Surface

    Get PDF
    The projection method (PM) is a simple and low-cost pattern recovery technique that already proved its effectiveness in retrieving the radiation properties of different types of arrays that change shape in time. However, when dealing with deformable beam-tilting arrays, this method requires to compute new compensating phase shifts every time that the main lobe is steered, since these shifts depend on both the deformation geometry and the steering angle. This tight requirement causes additional signal processing and complicates the prediction of the array behavior, especially if the deformation geometry is not a priori known: this can be an issue since the PM is mainly used for simple and low-cost systems. In this letter, we propose a simplification of this technique for beam-tilting arrays that requires only basic signal processing. In fact the phase shifts that we use are the sum of two components: one can be directly extracted from strain sensor data that measure surface deformation and the other one can be precomputed according to basic antenna theory. The effectiveness of our approach has been tested on two antennas: a 4 × 4 array (trough full-wave simulations and measurements) and on an 8 × 8 array (trough full-wave simulations) placed on a doubly wedge-shaped surface with a beam tilt up to 40 degrees

    Eight-Element Compact UWB-MIMO/Diversity Antenna with WLAN Band Rejection for 3G/4G/5G Communications

    Get PDF
    An eight element, compact Ultra Wideband-Multiple Input Multiple Output (UWB-MIMO) antenna capable of providing high data rates for future Fifth Generation (5G) terminal equipments along with the provision of necessary bandwidth for Third Generation (3G) and Fourth Generation (4G) communications that accomplishes band rejection from 4.85 to 6.35 GHz by deploying a Inductor Capacitor (LC) stub on the ground plane is presented. The incorporated stub also provides flexibility to reject any selected band as well as bandwidth control. The orthogonal placement of the printed monopoles permits polarization diversity and provides high isolation. In the proposed eight element UWB-MIMO/diversity antenna, monopole pair 3-4 are 180o mirrored transform of monopole pair 1-2 which lie on the opposite corners of a planar 50 x 50 mm2 substrate. Four additional monopoles are then placed perpendicularly to the same board leading to a total size of 50 x 50 x 25 mm3 only. The simulated results are validated by comparing the measurements of a fabricated prototype. It was concluded that the design meets the target specifications over the entire bandwidth of 2 to 12 GHz with a reflection coefficient better than -10 dB (except the rejected band), isolation more than 17 dB, low envelope correlation, low gain variation, stable radiation pattern, and strong rejection of the signals in the Wireless Local Area Network (WLAN) band. Overall, compact and reduced complexity of the proposed eight element architecture, strengthens its practical viability for the diversity applications in future 5G terminal equipments amongst other MIMO antennas designs present in the literature.Comment: 25 page

    Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines

    Get PDF
    An ultra-compact dual-polarised ultra-wideband multi-input multi-output antenna made with a single-shared-radiating element and two meandered feeding lines are proposed. Miniaturisation is achieved by using a combination of techniques, including a resonant stub connected to the ground through which shorts the excessive coupled energy before it reaches the other port and minimises coupling, slots etched in the radiator that also help minimise mutual coupling, while the meandered lines allow to bring the antenna closer to the greatly reduce the overall size of the antenna. Slots etched in the radiator and the use of a stub connected to the ground through, help to minimise the mutual coupling. The formation of orthogonal surface currents provides the necessary dual polarisation. Simulated and measured results demonstrate the wideband impedance matching, low mutual coupling and low envelope correlation coefficient. This antenna has an extremely compact size (22 7 24.3 mm2, including the ground plane) that makes it an excellent candidate for portable and handheld devices. \ua9 The Institution of Engineering and Technology

    Modeling and design of a plasma-based transmit-array with beam scanning capabilities

    Get PDF
    Abstract This work presents the proof of concept of a novel plasma-based transmit-array antenna with beam scanning capabilities. The transmit-array operates above the GHz (precisely at 1.6 GHz) and is capable of steering its main lobe up to thirty degrees. A metallic half-wave dipole is used as the active element of the transmit-array, while twenty-five cylindrical plasma discharges are adopted to steer the beam of the antenna simply by turning them on or off. These passive elements are geometrically displaced in a triangular lattice. A customized two-steps optimization strategy is used to choose the best geometrical parameters of the array and to select the subset of plasma discharges that maximizes the gain of the antenna for each desired scanning angle. Towards this aim, a particle swarm optimization is first used to optimize the geometrical parameters of the array, and then a genetic algorithm is adopted to select the optimal subset of plasma discharges that need to be turned on to scan the beam towards different directions. The designed transmit-array was modeled in CST Microwave Studio, using realistic plasma parameters extrapolated from measurements of a fabricated plasma discharge prototype

    Ultra-compact reconfigurable band reject uwb MIMO antenna with four radiators

    Get PDF
    A compact reconfigurable UWB MIMO antenna with four radiators that accomplish on-demand band rejection from 4.9 to 6.3 GHz is presented. An LC stub is connected to the ground plane by activating the PIN diode for each radiator. Two radiators are placed perpendicular to each other to exploit the polarization diversity on a compact 25 × 50 mm 2 FR4 laminate. Two additional radiators are then fixed obliquely on the same laminate (without increasing size) in angular configuration at ±45° perpendicular to the first two planar radiators still exploiting polarization diversity. The design is validated by prototyping and comparing the results with the simulated ones. On demand band rejection through the use of PIN diodes, wide impedance matching (2–12 GHz), high isolation amongst the radiators, compactness achieved by angular placement of the radiators, low gain variation over the entire bandwidth, band rejection control achieved by adjusting the gap between stub and ground plane, and low TARC values makes the proposed design very suitable for commercial handheld devices (i.e., Huawei E5785 and Netgear 815S housings). The proposed configuration of the UWB MIMO radiators has been investigated first time as per authors’ knowledge. ©2020 keywords: band rejected; envelope correlation co-efficient; four element MIMO; polarization diversity; ultra-wideband multiple input multiple outputEU H2020 Marie SkƂodowska-Curie Individual Fellowship ViSionRF (grant no. 840854)COMSATS Research Grant Program (project no. 16-63/CGRP/CUI/ISB/18/847

    Modeling of enhanced field confinement and scattering by optical wire antennas.

    Get PDF
    We describe the application of full-wave and semi-analytical numerical tools for the modeling of optical wire antennas, with the aim of providing novel guidelines for analysis and design. The concept of antenna impedance at optical frequencies is reviewed by means of finite-element simulations, whereas a surface-impedance integral equation is derived in order to perform an accurate and efficient calculation of the current distribution, and thereby to determine the equivalent-circuit parameters. These are introduced into simple circuits models, directly borrowed from radio frequency, which are applied in order to model the phenomena of enhanced field confinement at the feed gap and light scattering by optical antennas illuminated by plane waves

    Intraspecies Transmission of BASE Induces Clinical Dullness and Amyotrophic Changes

    Get PDF
    The disease phenotype of bovine spongiform encephalopathy (BSE) and the molecular/ biological properties of its prion strain, including the host range and the characteristics of BSE-related disorders, have been extensively studied since its discovery in 1986. In recent years, systematic testing of the brains of cattle coming to slaughter resulted in the identification of at least two atypical forms of BSE. These emerging disorders are characterized by novel conformers of the bovine pathological prion protein (PrPTSE), named high-type (BSE-H) and low-type (BSE-L). We recently reported two Italian atypical cases with a PrPTSE type identical to BSE-L, pathologically characterized by PrP amyloid plaques and known as bovine amyloidotic spongiform encephalopathy (BASE). Several lines of evidence suggest that BASE is highly virulent and easily transmissible to a wide host range. Experimental transmission to transgenic mice overexpressing bovine PrP (Tgbov XV) suggested that BASE is caused by a prion strain distinct from the BSE isolate. In the present study, we experimentally infected Friesian and Alpine brown cattle with Italian BSE and BASE isolates via the intracerebral route. BASE-infected cattle developed amyotrophic changes accompanied by mental dullness. The molecular and neuropathological profiles, including PrP deposition pattern, closely matched those observed in the original cases. This study provides clear evidence of BASE as a distinct prion isolate and discloses a novel disease phenotype in cattle

    State Control and the Effects of Foreign Relations on Bilateral Trade

    Get PDF
    Do states use trade to reward and punish partners? WTO rules and the pressures of globalization restrict states’ capacity to manipulate trade policies, but we argue that governments can link political goals with economic outcomes using less direct avenues of inïŹ‚uence over ïŹrm behavior. Where governments intervene in markets, politicization of trade is likely to occur. In this paper, we examine one important form of government control: state ownership of ïŹrms. Taking China and India as examples, we use bilateral trade data by ïŹrm ownership type, as well as measures of bilateral political relations based on diplomatic events and UN voting to estimate the effect of political relations on import and export ïŹ‚ows. Our results support the hypothesis that imports controlled by state-owned enterprises (SOEs) exhibit stronger responsiveness to political relations than imports controlled by private enterprises. A more nuanced picture emerges for exports; while India’s exports through SOEs are more responsive to political tensions than its ïŹ‚ows through private entities, the opposite is true for China. This research holds broader implications for how we should think about the relationship between political and economic relations going forward, especially as a number of countries with partially state-controlled economies gain strength in the global economy
    • 

    corecore