10 research outputs found

    Voltage collapse in complex power grids

    No full text
    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins

    Point of care HbA1c level for diabetes mellitus management and its accuracy among tuberculosis patients: a study in four countries

    Get PDF
    BACKGROUND: Diabetes mellitus (DM) is common among tuberculosis (TB) patients and often undiagnosed or poorly controlled. We compared point of care (POC) with laboratory glycated haemoglobin (HbA1c) testing among newly diagnosed TB patients to assess POC test accuracy, safety and acceptability in settings in which immediate access to DM services may be difficult. METHODS: We measured POC and accredited laboratory HbA1c (using high-performance liquid chromatography) in 1942 TB patients aged 18 years recruited from Peru, Romania, Indonesia and South Africa. We calculated overall agreement and individual variation (mean ± 2 standard deviations) stratified by country, age, sex, body mass index (BMI), HbA1c level and comorbidities (anaemia, human immunodeficiency virus [HIV]). We used an error grid approach to identify disagreement that could raise significant concerns. RESULTS: Overall mean POC HbA1c values were modestly higher than laboratory HbA1c levels by 0.1% units (95%CI 0.1–0.2); however, there was a substantial discrepancy for those with severe anaemia (1.1% HbA1c, 95%CI 0.7–1.5). For 89.6% of 1942 patients, both values indicated the same DM status (no DM, HbA1c <6.5%) or had acceptable deviation (relative difference <6%). Individual agreement was variable, with POC values up to 1.8% units higher or 1.6% lower. For a minority, use of POC HbA1c alone could result in error leading to potential overtreatment (n = 40, 2.1%) or undertreatment (n = 1, 0.1%). The remainder had moderate disagreement, which was less likely to influence clinical decisions. CONCLUSION: POC HbA1c is pragmatic and sufficiently accurate to screen for hyperglycaemia and DM risk among TB patients

    Memetic Algorithms for Business Analytics and Data Science: A Brief Survey

    Full text link
    This chapter reviews applications of Memetic Algorithms in the areas of business analytics and data science. This approach originates from the need to address optimization problems that involve combinatorial search processes. Some of these problems were from the area of operations research, management science, artificial intelligence and machine learning. The methodology has developed considerably since its beginnings and now is being applied to a large number of problem domains. This work gives a historical timeline of events to explain the current developments and, as a survey, gives emphasis to the large number of applications in business and consumer analytics that were published between January 2014 and May 2018
    corecore