20 research outputs found

    REFROIDISSEMENT MOLECULAIRE INDUIT PAR CHAMP ELECTRIQUE ; MISE EN EVIDENCE PAR SPECTROSCOPIE NON LINEAIRE CARS

    No full text
    National audienceNous avons montré qu'un refroidissement moléculaire pouvait être induit par un champ électrique statique appliqué à des molécules non polaires d'huile de paraffine. Cet effet a été mis en évidence grâce à une mesure de spectroscopie CARS (Coherent Anti-Stokes Raman Scattering). De manière complémentaire, l'exposition de molécules à un champ électrique permet de contrôler leur orientation et ainsi améliorer ou diminuer l'amplitude de leur signature vibrationnelle

    Novel methods of ultrabroaband coherent Raman microspectroscopy

    No full text
    La technique de spectroscopie basée sur la diffusion Raman Stokes spontanée est un procédé standard employé dans de nombreux domaines allant de la thermodynamique à la médecine, en passant par la science des matériaux. À la faveur d'un échange d'énergie inélastique, elle permet de déterminer les fréquences des vibrations moléculaires présentes dans un objet. On peut ainsi remonter à l'identification des molécules et ainsi caractériser l'objet d'étude sans utiliser de marqueur spécifique. Cette méthode est néanmoins affligée de défauts. Outre la présence d'un signal de fluorescence qui peut submerger la réponse Raman, le désavantage majeur est le long temps d'exposition que requière cette technique. Dans le cas d'étude d'échantillon biologique, cela proscris son usage pour des mesures de microspectroscopie : la cartographie spectrale d'objet microscopique. Afin de pallier ce problème, de nouvelles techniques ont été développées. C'est le cas de la spectroscopie employant la diffusion Raman anti-Stokes Cohérente (ou CARS pour Coherent Anti-Stokes Raman Scattering). Du fait de sa cohérence et de sa directivité le signal anti-Stokes affiche une intensité 10^5 to 10^6 fois plus importante que dans le cas de la diffusion Raman spontanée, ce qui permet alors d'abaisser le temps d'exposition à un niveau tolérable pour les objets biologiques lors d'une mesure de microspectroscopie. De plus, le caractère anti-Stokes du signal l'épargne de la contribution de la fluorescence. Pourtant, un défaut majeur limite encore l'utilisation de cette technique : le bruit de fond non résonant. Ce phénomène peut diminuer, voir noyer la contribution résonante qui porte l'information. Cette thèse a permis le développement de techniques CARS autorisant une réduction du bruit de fond non résonant. Pour ce faire un dispositif de spectroscopie CARS multiplex (M-CARS) en configuration copropagative a été construit. Ses capacités sont illustrées par des mesures spectrales d'échantillons minéral, végétal et biologique. À partir de ce système, il a été établi une méthode innovante permettant de discriminer le signal résonant du bruit non résonant en utilisant un champ électrique continu. Il est aussi démontré la mise en place d'un procédé qui a permis de mener la première mesure de microspectroscopie M-CARS en configuration contrapropagative sur un échantillon biologique. Cette configuration limite la collecte du signal à l'objet d'étude, empêchant ainsi l'acquisition du signal résonant et non résonant issu du solvant, principal responsable du bruit de fond non résonant lors d'une mesure CARS en configuration copropagative.The spectroscopy technique based on spontanée Raman Stokes scattering is a standard process used in many fields spanning from thermodynamic and medicine, to materials sciences. An inelastic energy exchange permits to determinate the frequency of the molecular vibrations in an object. One can identify the molecules and thus, can characterize the object of study in a label-free way. Nevertheless, this method is afflicted with faults. Beside the presence of fluorecence that can drown the Raman answer, the main drawback is the long exposition time required. In the case of biological sample, this can prohibit the use of spontaneous Raman scattering for microspectroscopy measures: the spectral mapping of microscopic objects. To avoid this problem, new techniques have been developed. It is the case of Coherent anti-Stokes Raman scattering (CARS) spectroscopy. Due to its coherence and its directivity, the anti-Stokes signal has an intensity 105 to 106 times greater than the spontaneous Raman scattering one. The exposition time is then reduced to a tolerable level for biological objects during microspectroscopy measures. Moreover, the anti-Stokes characteristic of the signal prevents the fluorescence contribution. However, a major fault still limits the use of this technique: the nonresonant background. This phenomenon can diminish, even overwhelm the resonant contribution carrying the information. This thesis permitted the development of CARS approaches that allow the reduction of the nonresonant background. To do so, a multiplex CARS (M-CARS) spectroscopy apparatus in a forward configuration has been built. Its abilities are illustrated with spectral measures of mineral, vegetal and biological samples. Based on this system, it has been established an innovative method that can discriminate the resonant signal from the nonresonant one thanks to a static electric field. It has been also been demonstrated the development of a process that has allowed the first M-CARS microspectroscopy measure of a biological sample in a contrapropagative configuration. This setup limits the collect of the signal to the object of study, avoiding the acquisition of the resonant and resonant signals coming from the solvent, responsible for the major part of non resonant background during a CARS measure in a forward configuration

    Nouveaux procédés de microspectroscopie Raman cohérent à bande ultralarge

    Get PDF
    The spectroscopy technique based on spontanée Raman Stokes scattering is a standard process used in many fields spanning from thermodynamic and medicine, to materials sciences. An inelastic energy exchange permits to determinate the frequency of the molecular vibrations in an object. One can identify the molecules and thus, can characterize the object of study in a label-free way. Nevertheless, this method is afflicted with faults. Beside the presence of fluorecence that can drown the Raman answer, the main drawback is the long exposition time required. In the case of biological sample, this can prohibit the use of spontaneous Raman scattering for microspectroscopy measures: the spectral mapping of microscopic objects. To avoid this problem, new techniques have been developed. It is the case of Coherent anti-Stokes Raman scattering (CARS) spectroscopy. Due to its coherence and its directivity, the anti-Stokes signal has an intensity 105 to 106 times greater than the spontaneous Raman scattering one. The exposition time is then reduced to a tolerable level for biological objects during microspectroscopy measures. Moreover, the anti-Stokes characteristic of the signal prevents the fluorescence contribution. However, a major fault still limits the use of this technique: the nonresonant background. This phenomenon can diminish, even overwhelm the resonant contribution carrying the information. This thesis permitted the development of CARS approaches that allow the reduction of the nonresonant background. To do so, a multiplex CARS (M-CARS) spectroscopy apparatus in a forward configuration has been built. Its abilities are illustrated with spectral measures of mineral, vegetal and biological samples. Based on this system, it has been established an innovative method that can discriminate the resonant signal from the nonresonant one thanks to a static electric field. It has been also been demonstrated the development of a process that has allowed the first M-CARS microspectroscopy measure of a biological sample in a contrapropagative configuration. This setup limits the collect of the signal to the object of study, avoiding the acquisition of the resonant and resonant signals coming from the solvent, responsible for the major part of non resonant background during a CARS measure in a forward configuration.La technique de spectroscopie basée sur la diffusion Raman Stokes spontanée est un procédé standard employé dans de nombreux domaines allant de la thermodynamique à la médecine, en passant par la science des matériaux. À la faveur d'un échange d'énergie inélastique, elle permet de déterminer les fréquences des vibrations moléculaires présentes dans un objet. On peut ainsi remonter à l'identification des molécules et ainsi caractériser l'objet d'étude sans utiliser de marqueur spécifique. Cette méthode est néanmoins affligée de défauts. Outre la présence d'un signal de fluorescence qui peut submerger la réponse Raman, le désavantage majeur est le long temps d'exposition que requière cette technique. Dans le cas d'étude d'échantillon biologique, cela proscris son usage pour des mesures de microspectroscopie : la cartographie spectrale d'objet microscopique. Afin de pallier ce problème, de nouvelles techniques ont été développées. C'est le cas de la spectroscopie employant la diffusion Raman anti-Stokes Cohérente (ou CARS pour Coherent Anti-Stokes Raman Scattering). Du fait de sa cohérence et de sa directivité le signal anti-Stokes affiche une intensité 10^5 to 10^6 fois plus importante que dans le cas de la diffusion Raman spontanée, ce qui permet alors d'abaisser le temps d'exposition à un niveau tolérable pour les objets biologiques lors d'une mesure de microspectroscopie. De plus, le caractère anti-Stokes du signal l'épargne de la contribution de la fluorescence. Pourtant, un défaut majeur limite encore l'utilisation de cette technique : le bruit de fond non résonant. Ce phénomène peut diminuer, voir noyer la contribution résonante qui porte l'information. Cette thèse a permis le développement de techniques CARS autorisant une réduction du bruit de fond non résonant. Pour ce faire un dispositif de spectroscopie CARS multiplex (M-CARS) en configuration copropagative a été construit. Ses capacités sont illustrées par des mesures spectrales d'échantillons minéral, végétal et biologique. À partir de ce système, il a été établi une méthode innovante permettant de discriminer le signal résonant du bruit non résonant en utilisant un champ électrique continu. Il est aussi démontré la mise en place d'un procédé qui a permis de mener la première mesure de microspectroscopie M-CARS en configuration contrapropagative sur un échantillon biologique. Cette configuration limite la collecte du signal à l'objet d'étude, empêchant ainsi l'acquisition du signal résonant et non résonant issu du solvant, principal responsable du bruit de fond non résonant lors d'une mesure CARS en configuration copropagative

    Orge, quinoa et autres céréales dans les systèmes productifs andins

    No full text
    SAD CT3 [email protected] Livre écrit à partir de communications données au cours de la 9e Université Européenne d'Été - Anthropologie des Populations alpines : Alimentation et Montagne : Produire, transformer, conserver, consommer ; 2006/07/03-08 ; Vallouise (FRA)National audienc

    Génération d'un spectre infrarouge à forte densité spectrale de puissance dédié à la spectroscopie CARS polychromatique

    No full text
    National audienceNous présentons une source de continuum infrarouge optimisée pour la micro-spectroscopie Raman cohérente (CARS) de cellules biologiques. Elle est conçue de façon à émettre une forte densité spectrale de puissance dans la bande correspondant à la zone d'empreinte digitale des liaisons chimiques d' intérêt (1080-1600 nm pour un pompage à 1064 nm) tout en maintenant une très bonne synchronisation temporelle de l'ensemble de ses composantes spectrales. Cette source est basée sur un élargissement spectral induit dans une fibre microstructurée amplificatrice à large cœur dont la longueur d'onde de dispersion nulle est positionnée au centre de la bande spectrale d' intérêt

    Supercontinuum Generation in an Ytterbium-Doped Photonic Crystal Fiber for CARS Spectroscopy

    No full text
    International audienceAn optimized broadband source emitting from 1064 to 1600 nm was specially designed for coherent anti-Stokes Raman scattering spectroscopy. This source is based on the use of a ytterbium-doped photonic crystal fiber with a large core in which a supercontinuum is generated from a signal wave at 1064 nm regenerated by ytterbium ions pumping. A particularly flat spectrum with high spectral power density and perfectly synchronized spectral components is obtained

    Measurement of the third order nonlinear susceptibility of paratellurite single crystal using multiplex CARS

    No full text
    International audienceWe report the extraction of the real part of the third order nonlinear susceptibility for a c-cut paratellurite (TeO 2 − α) single crystal using the nonresonant contribution of the multiplex coherent anti-Stokes Raman scattering (M-CARS) signal. Using fused silica and SF57 as nonlinear reference materials, we derive the absolute value of the real part of the electronic third order susceptibility and we evidence the in-plane modulation of the nonlinear refractive index. These results are in total agreement with those recently obtained by the z-scan method
    corecore