2,578 research outputs found

    Time-resolved charge detection in graphene quantum dots

    Full text link
    We present real-time detection measurements of electron tunneling in a graphene quantum dot. By counting single electron charging events on the dot, the tunneling process in a graphene constriction and the role of localized states are studied in detail. In the regime of low charge detector bias we see only a single time-dependent process in the tunneling rate which can be modeled using a Fermi-broadened energy distribution of the carriers in the lead. We find a non-monotonic gate dependence of the tunneling coupling attributed to the formation of localized states in the constriction. Increasing the detector bias above 2 mV results in an increase of the dot-lead transition rate related to back-action of the charge detector current on the dot.Comment: 8 pages, 6 figure

    Automorphisms of the affine SU(3) fusion rules

    Full text link
    We classify the automorphisms of the (chiral) level-k affine SU(3) fusion rules, for any value of k, by looking for all permutations that commute with the modular matrices S and T. This can be done by using the arithmetic of the cyclotomic extensions where the problem is naturally posed. When k is divisible by 3, the automorphism group (Z_2) is generated by the charge conjugation C. If k is not divisible by 3, the automorphism group (Z_2 x Z_2) is generated by C and the Altsch\"uler--Lacki--Zaugg automorphism. Although the combinatorial analysis can become more involved, the techniques used here for SU(3) can be applied to other algebras.Comment: 21 pages, plain TeX, DIAS-STP-92-4

    Feasibility of manufacturing a patient-specific spinal implant

    Get PDF
    Spinal fusion is performed for degenerative spinal condition when conservative measures fail. Implant size and shape are not standardised between manufacturers, and best match often means compromises. Bioprinting offers a unique opportunity to create a tailor-made solution. PURPOSE: The goal of this study was to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion

    Computational models for characterisation and design of patient-specific spinal implant

    Get PDF
    BACKGROUND CONTEXT: Spinal fusion is designed to reduce movements between vertebrae and therefore pain. The most used devices for this procedure are mainly made of titanium or polyether ether ketone (PEEK). However, the mismatch between devices, with standard shapes and materials, and the surrounding bones can lead to suboptimal outcomes. Computational models, namely, Finite Element Analyses (FEA), can be employed to optimise existing device and design more effective solutions. PURPOSE: The goal of this study was to compare the performance of different materials and material densities for spinal cages, and to design a novel geometry which can ideally match the anatomical characteristics of a patient. STUDY DESIGN/SETTING: Computational. PATIENT SAMPLE: Nil. OUTCOME MEASURES: Nil. METHODS: FEA were set up to simulate compression (400 N) and bending (7.5 Nm) on a generic cage design. Three materials were modelled: titanium, PEEK and polycarbonate. Polycarbonate was included as widely available within additive manufacturing techniques. For each of the cages, four designs were modelled with varying material filling density. Furthermore, a new cage was modelled to match the pre-operative computed tomography (CT) of a patient exactly. The patient-specific cage was also tested by means of FEA. RESULTS: Stress distribution was compared between all the three materials tested. Consistently, stresses increased with reducing material density. Stress peak values were lower than the respective risk of failure in all the simulated cases, confirming the feasibility of polycarbonate implants. The patient-specific design showed even stress distribution consistently within anatomical constraints. CONCLUSIONS: Computational analyses suggested the feasibility of a lighter, cheaper and patient-specific cage for spinal fusion

    Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebra disc (IVD) degeneration treatment

    Get PDF
    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (μCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal surgical applications

    Augmentation of the mechanical and chemical resistance characteristics of an Al2O3-based refractory by means of high power diode laser surface treatment

    Get PDF
    Augmentation of the wear rate and wear life characteristics of an Al2O3-based refractory within both normal and corrosive (NaOH and HNO3) environmental conditions was effected by means of high power diode laser (HPDL) surface treatment. Life assessment testing revealed that the HPDL generated glaze increased the wear life of the Al2O3-based refractory by 1.27 to 13.44 times depending upon the environmental conditions. Such improvements are attributed to the fact that after laser treatment, the microstructure of the Al2O3-based refractory was altered from a porous, randomly ordered structure, to a much more dense and consolidated structure that contained fewer cracks and porosities. In a world economy that is increasingly placing more importance on material conservation, a technique of this kind for delaying the unavoidable erosion (wear) and corrosion that materials such as the Al2O3-based refractory must face may provide an economically attractive option for contemporary engineers

    Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men

    Get PDF
    We analysed the importance of systemic and peripheral arteriovenous O2 difference (a- v− O2 and a-vf O2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake ( V˙ O2max ). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion vs perfusion limitations vary with V˙ O2max . Articles (n=17) publishing individual data (n=154) on V˙ O2max , maximal cardiac output ( Q˙ max ; indicator-dilution or Fick method), a- v− O2 difference (catheters or Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group-mean data (articles: n=27; subjects: n=234) on leg blood flow (LBF; thermodilution), a-vf O2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained. Q˙ max and two-LBF increased linearly by 4.9-6.0 L·min-1 per 1 L·min-1 increase in V˙ O2max (R2 =0.73 and R2 =0.67, respectively; both P<0.001). The a- v− O2 difference increased from 118-168 mL·L-1 from a V˙ O2max of 2-4.5 L·min-1 followed by a reduction (second-order polynomial: R2 =0.27). After accounting for a hypoxemia-induced decrease in arterial O2 content with increasing V˙ O2max (R2 =0.17; P<0.001), systemic O2 extraction fraction increased up to ~90% ( V˙ O2max : 4.5 L·min-1 ) with no further change (exponential decay model: R2 =0.42). Likewise, leg O2 extraction fraction increased with V˙ O2max to approach a maximal value of ~90-95% (R2 =0.83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with V˙ O2max (R2 =0.77 and R2 =0.31, respectively; both P<0.01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to V˙ O2max , enhanced O2 extraction fraction (≥90%) contributes to the remarkably high V˙ O2max in endurance-trained individuals

    A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1−x_{1-x}Cox_{x})2_2As2_2

    Full text link
    Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2_2As2_2 into two distinct transitions. For xx=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5T_{\mathrm{TO}}=99 \pm 0.5 K) and the antiferromagnetic transition occurs at TAF=93±0.5T_{\mathrm{AF}}=93 \pm 0.5 K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x≈0.055x \approx 0.055. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice

    Implications of an arithmetical symmetry of the commutant for modular invariants

    Get PDF
    We point out the existence of an arithmetical symmetry for the commutant of the modular matrices S and T. This symmetry holds for all affine simple Lie algebras at all levels and implies the equality of certain coefficients in any modular invariant. Particularizing to SU(3)_k, we classify the modular invariant partition functions when k+3 is an integer coprime with 6 and when it is a power of either 2 or 3. Our results imply that no detailed knowledge of the commutant is needed to undertake a classification of all modular invariants.Comment: 17 pages, plain TeX, DIAS-STP-92-2
    • …
    corecore