512 research outputs found

    BCS and generalized BCS superconductivity in relativistic quantum field theory. I. formulation

    Full text link
    We investigate the BCS and generalized BCS theories in the relativistic quantum field theory. We select the gauge freedom as U(1), and introduce a BCS-type effective attractive interaction. After introducing the Gor'kov formalism and performing the group theoretical consideration of the mean fields, we solve the relativistic Gor'kov equation and obtain the Green's functions in analytical forms. We obtain various types of gap equations.Comment: 31 page

    Electric field response of strongly correlated one-dimensional metals: a Bethe-Ansatz density functional theory study

    Full text link
    We present a theoretical study on the response properties to an external electric field of strongly correlated one-dimensional metals. Our investigation is based on the recently developed Bethe-Ansatz local density approximation (BALDA) to the density functional theory formulation of the Hubbard model. This is capable of describing both Luttinger liquid and Mott-insulator correlations. The BALDA calculated values for the static linear polarizability are compared with those obtained by numerically accurate methods, such as exact (Lanczos) diagonalization and the density matrix renormalization group, over a broad range of parameters. In general BALDA linear polarizabilities are in good agreement with the exact results. The response of the exact exchange and correlation potential is found to point in the same direction of the perturbing potential. This is well reproduced by the BALDA approach, although the fine details depend on the specific parameterization for the local approximation. Finally we provide a numerical proof for the non-locality of the exact exchange and correlation functional.Comment: 8 pages and 8 figure

    The generator coordinate method in time-dependent density-functional theory: memory made simple

    Full text link
    The generator coordinate (GC) method is a variational approach to the quantum many-body problem in which interacting many-body wave functions are constructed as superpositions of (generally nonorthogonal) eigenstates of auxiliary Hamiltonians containing a deformation parameter. This paper presents a time-dependent extension of the GC method as a new approach to improve existing approximations of the exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT). The time-dependent GC method is shown to be a conceptually and computationally simple tool to build memory effects into any existing adiabatic XC potential. As an illustration, the method is applied to driven parametric oscillations of two interacting electrons in a harmonic potential (Hooke's atom). It is demonstrated that a proper choice of time-dependent generator coordinates in conjunction with the adiabatic local-density approximation reproduces the exact linear and nonlinear two-electron dynamics quite accurately, including features associated with double excitations that cannot be captured by TDDFT in the adiabatic approximation.Comment: 10 pages, 13 figure

    Density-functionals not based on the electron gas: Local-density approximation for a Luttinger liquid

    Full text link
    By shifting the reference system for the local-density approximation (LDA) from the electron gas to other model systems one obtains a new class of density functionals, which by design account for the correlations present in the chosen reference system. This strategy is illustrated by constructing an explicit LDA for the one-dimensional Hubbard model. While the traditional {\it ab initio} LDA is based on a Fermi liquid (the electron gas), this one is based on a Luttinger liquid. First applications to inhomogeneous Hubbard models, including one containing a localized impurity, are reported.Comment: 4 pages, 4 figures (final version, contains additional applications and discussion; accepted by Phys. Rev. Lett.

    Andreev reflection and Klein tunneling in graphene

    Full text link
    This is a colloquium-style introduction to two electronic processes in a carbon monolayer (graphene), each having an analogue in relativistic quantum mechanics. Both processes couple electron-like and hole-like states, through the action of either a superconducting pair potential or an electrostatic potential. The first process, Andreev reflection, is the electron-to-hole conversion at the interface with a superconductor. The second process, Klein tunneling, is the tunneling through a p-n junction. Existing and proposed experiments on Josephson junctions and bipolar junctions in graphene are discussed from a unified perspective. CONTENTS: I. INTRODUCTION II. BASIC PHYSICS OF GRAPHENE (Dirac equation; Time reversal symmetry; Boundary conditions; Pseudo-diffusive dynamics) III. ANDREEV REFLECTION (Electron-hole conversion; Retro-reflection vs. specular reflection; Dirac-Bogoliubov-de Gennes equation; Josephson junctions; Further reading) IV. KLEIN TUNNELING (Absence of backscattering; Bipolar junctions; Magnetic field effects; Further reading) V. ANALOGIES (Mapping between NS and p-n junction; Retro-reflection vs. negative refraction; Valley-isospin dependent quantum Hall effect; Pseudo-superconductivity)Comment: 20 pages, 28 figures; "Colloquium" for Reviews of Modern Physic

    Contribution of the second Landau level to the exchange energy of the three-dimensional electron gas in a high magnetic field

    Get PDF
    We derive a closed analytical expression for the exchange energy of the three-dimensional interacting electron gas in strong magnetic fields, which goes beyond the quantum limit (L=0) by explicitly including the effect of the second, L=1, Landau level and arbitrary spin polarization. The inclusion of the L=1 level brings the fields to which the formula applies closer to the laboratory range, as compared to previous expressions, valid only for L=0 and complete spin polarization. We identify, and explain, two distinct regimes, separated by a critical density ncn_c. Below ncn_c, the per-particle exchange energy is lowered by the contribution of L=1, whereas above ncn_c it is increased. As special cases of our general equation we recover various known, more limited, results for higher fields, and identify and correct a few inconsistencies in some of these earlier expressions.Comment: 7 pages, 2 figures, PRB accepte

    Degenerate ground states and nonunique potentials: breakdown and restoration of density functionals

    Get PDF
    The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total and exchange-correlation energy functionals to the extent needed in applications of DFT to atomic, molecular and solid-state physics and quantum chemistry. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems

    Bethe-Ansatz density-functional theory of ultracold repulsive fermions in one-dimensional optical lattices

    Full text link
    We present an extensive numerical study of ground-state properties of confined repulsively interacting fermions on one-dimensional optical lattices. Detailed predictions for the atom-density profiles are obtained from parallel Kohn-Sham density-functional calculations and quantum Monte Carlo simulations. The density-functional calculations employ a Bethe-Ansatz-based local-density approximation for the correlation energy, which accounts for Luttinger-liquid and Mott-insulator physics. Semi-analytical and fully numerical formulations of this approximation are compared with each other and with a cruder Thomas-Fermi-like local-density approximation for the total energy. Precise quantum Monte Carlo simulations are used to assess the reliability of the various local-density approximations, and in conjunction with these allow to obtain a detailed microscopic picture of the consequences of the interplay between particle-particle interactions and confinement in one-dimensional systems of strongly correlated fermions.Comment: 14 pages, 11 figures, 1 table, submitte

    Nonuniqueness of the Potentials of Spin-Density-Functional Theory

    Get PDF
    It is shown that, contrary to widely held beliefs, the potentials of spin-density-functional theory (SDFT) are not unique functionals of the spin densities. Explicit examples of distinct sets of potentials with the same ground-state densities are constructed, and general arguments that uniqueness should not occur in SDFT and other generalized density-functional theories are given. As a consequence, various types of applications of SDFT require significant corrections or modifications.Comment: 4 pages, no figure

    Universal and nonuniversal contributions to block-block entanglement in many-fermion systems

    Full text link
    We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x>1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term steming from the thermodynamic limit.Comment: 6 pages, 3 figure
    • …
    corecore