3,546 research outputs found

    Metrics with Prescribed Ricci Curvature near the Boundary of a Manifold

    Full text link
    Suppose MM is a manifold with boundary. Choose a point o∈∂Mo\in\partial M. We investigate the prescribed Ricci curvature equation \Ric(G)=T in a neighborhood of oo under natural boundary conditions. The unknown GG here is a Riemannian metric. The letter TT in the right-hand side denotes a (0,2)-tensor. Our main theorems address the questions of the existence and the uniqueness of solutions. We explain, among other things, how these theorems may be used to study rotationally symmetric metrics near the boundary of a solid torus T\mathcal T. The paper concludes with a brief discussion of the Einstein equation on T\mathcal T.Comment: 13 page

    Long Lived Fourth Generation and the Higgs

    Full text link
    A chiral fourth generation is a simple and well motivated extension of the standard model, and has important consequences for Higgs phenomenology. Here we consider a scenario where the fourth generation neutrinos are long lived and have both a Dirac and Majorana mass term. Such neutrinos can be as light as 40 GeV and can be the dominant decay mode of the Higgs boson for Higgs masses below the W-boson threshold. We study the effect of the Majorana mass term on the Higgs branching fractions and reevaluate the Tevatron constraints on the Higgs mass. We discuss the prospects for the LHC to detect the semi-invisible Higgs decays into fourth generation neutrino pairs. Under the assumption that the lightest fourth generation neutrino is stable, it's thermal relic density can be up to 20% of the observed dark matter density in the universe. This is in agreement with current constraints on the spin dependent neutrino-neutron cross section, but can be probed by the next generation of dark matter direct detection experiments.Comment: v1: 19 pages, 5 figures; v2: References added; v3: version to appear in JHE

    Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Get PDF
    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death

    Light dark matter and Z′Z' dark force at colliders

    Full text link
    Light Dark Matter, <10<10 GeV, with sizable direct detection rate is an interesting and less explored scenario. Collider searches can be very powerful, such as through the channel in which a pair of dark matter particle are produced in association with a jet. It is a generic possibility that the mediator of the interaction between DM and the nucleus will also be accessible at the Tevatron and the LHC. Therefore, collider search of the mediator can provide a more comprehensive probe of the dark matter and its interactions. In this article, to demonstrate the complementarity of these two approaches, we focus on the possibility of the mediator being a new U(1)′U(1)' gauge boson, which is probably the simplest model which allows a large direct detection cross section for a light dark matter candidate. We combine searches in the monojet+MET channel and dijet resonance search for the mediator. We find that for the mass of Z′Z' between 250 GeV and 4 TeV, resonance searches at the colliders provide stronger constraints on this model than the monojet+MET searches.Comment: 23 pages and 14 figure

    Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice

    Get PDF
    DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit

    Acute lyme infection presenting with amyopathic dermatomyositis and rapidly fatal interstitial pulmonary fibrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Dermatomyositis has been described in the setting of lyme infection in only nine previous case reports. Although lyme disease is known to induce typical clinical findings that are observed in various collagen vascular diseases, to our knowledge, we believe that our case is the first presentation of acute lyme disease associated with amyopathic dermatomyositis, which was then followed by severe and fatal interstitial pulmonary fibrosis only two months later.</p> <p>Case presentation</p> <p>We present a case of a 64-year-old African-American man with multiple medical problems who was diagnosed with acute lyme infection after presenting with the pathognomonic rash and confirmatory serology. In spite of appropriate antimicrobial therapy for lyme infection, he developed unexpected amyopathic dermatomyositis and then interstitial lung disease.</p> <p>Conclusions</p> <p>This case illustrates a potential for lyme disease to produce clinical syndromes that may be indistinguishable from primary connective tissue diseases. An atypical and sequential presentation (dermatomyositis and interstitial lung disease) of a common disease (lyme infection) is discussed. This case illustrates that in patients who are diagnosed with lyme infection who subsequently develop atypical muscular, respiratory or other systemic complaints, the possibility of severe rheumatological and pulmonary complications should be considered.</p

    On reducing inconsistency of pairwise comparison matrices below an acceptance threshold

    Get PDF
    A recent work of the authors on the analysis of pairwise comparison matrices that can be made consistent by the modification of a few elements is continued and extended. Inconsistency indices are defined for indicating the overall quality of a pairwise comparison matrix. It is expected that serious contradictions in the matrix imply high inconsistency and vice versa. However, in the 35-year history of the applications of pairwise comparison matrices, only one of the indices, namely CR proposed by Saaty, has been associated to a general level of acceptance, by the well known ten percent rule. In the paper, we consider a wide class of inconsistency indices, including CR, CM proposed by Koczkodaj and Duszak and CI by Pel\'aez and Lamata. Assume that a threshold of acceptable inconsistency is given (for CR it can be 0.1). The aim is to find the minimal number of matrix elements, the appropriate modification of which makes the matrix acceptable. On the other hand, given the maximal number of modifiable matrix elements, the aim is to find the minimal level of inconsistency that can be achieved. In both cases the solution is derived from a nonlinear mixed-integer optimization problem. Results are applicable in decision support systems that allow real time interaction with the decision maker in order to review pairwise comparison matrices.Comment: 20 page

    Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating

    Get PDF
    In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)
    • …
    corecore