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Abstract A recent work of the authors on the analysis of pairwise comparison matri-

ces that can be made consistent by the modification of a few elements is continued and

extended. Inconsistency indices are defined for indicating the overall quality of a pair-

wise comparison matrix. It is expected that serious contradictions in the matrix imply

high inconsistency and vice versa. However, in the 35-year history of the applications of

pairwise comparison matrices, only one of the indices, namely CR proposed by Saaty,

has been associated to a general level of acceptance, by the well known ten percent

rule. In the paper, we consider a wide class of inconsistency indices, including CR,

CM proposed by Koczkodaj and CI by Peláez and Lamata. Assume that a threshold

of acceptable inconsistency is given (for CR it can be 0.1). The aim is to find the

minimal number of matrix elements, the appropriate modification of which makes the
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matrix acceptable. On the other hand, given the maximal number of modifiable matrix

elements, the aim is to find the minimal level of inconsistency that can be achieved. In

both cases the solution is derived from a nonlinear mixed-integer optimization prob-

lem. Results are applicable in decision support systems that allow real time interaction

with the decision maker in order to review pairwise comparison matrices.

Keywords Multi-attribute decision making · pairwise comparison matrix · inconsis-

tency · mixed 0-1 convex programming

1 Introduction

Pairwise comparison matrices (Saaty, 1977) are used in multi-attribute decision prob-

lems, where relative importance of the criteria, the evaluations of the alternatives with

respect to each criterion are to be quantified. The method of pairwise comparison is

also applied for determining voting powers in group decision making. One of the advan-

tages of pairwise comparison matrices is that the decision maker is faced to a sequence

of elementary questions concerning the comparison of two criteria/alternatives at a

time, instead of a complex task of providing the weights of the whole set of them.

A real n×n matrix A is a pairwise comparison matrix if it is positive and reciprocal,

i.e.,

aij > 0, (1)

aij =
1

aji
(2)

for all i, j = 1, . . . , n. A is consistent if the transitivity property

aijajk = aik (3)

holds for all i, j, k = 1, 2, . . . , n; otherwise it is called inconsistent.

For a positive n × n matrix A, let Ā = log A denote the n × n matrix with the

elements

āij = log aij , i, j = 1, . . . , n.

Then A is consistent if and only if

āij + ājk + āki = 0, ∀ i, j, k = 1, . . . , n (4)

holds. Matrices Ā fulfilling the homogenous linear system (4) constitute a linear sub-

space in R
n×n.

Let Pn denote the set of the n × n pairwise comparison matrices, and Cn ⊂ Pn

the set of the consistent matrices. Since the reciprocity constraint (2) corresponds to

āij = −āji in the logarithmized space, the set logPn = {log A | A ∈ Pn} is the

set of n × n skew-symmetric matrices, an n(n − 1)/2-dimensional linear subspace of

R
n×n. The set log Cn = {log A | A ∈ Cn} is the set of matrices fulfilling (4), and as

pointed out in Chu (1997), is an (n− 1)-dimensional linear subspace of R
n×n. Clearly,

log Cn ⊂ logPn.

In decision problems of real life, the pairwise comparison matrices are rarely consis-

tent. Nevertheless, decision makers are interested in the level of inconsistency of their

judgements, which somehow expresses the goodness or “quality” of pairwise compar-

isons totally, because conflicting judgements may lead to senseless decisions. Therefore,
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some index is needed to measure the possible contradictions and inconsistencies of the

pairwise comparison matrix.

A function φn : Pn → R is called an inconsistency index if φn(A) = 0 for every

consistent and φn(A) > 0 for every inconsistent pairwise comparison matrix A. The

inconsistency indices used in the practice are continuous, and the value of φn(A) > 0

indicates, more or less, how much an inconsistent matrix differs from a consistent one.

Since in the practice the consistency of a pairwise comparison matrix is not easy

to assure, certain level of inconsistency is usually accepted by the decision makers.

This works in the practice in such a way that for a given inconsistency index φn an

acceptance threshold αn ≥ 0 is chosen, and a matrix A ∈ Pn is kept for further use only

if φn(A) ≤ αn holds; otherwise, it is rejected or the pairwise comparisons are carried

out again. The carrying out of all pairwise comparisons for filling-in the matrix is often

a time-consuming task. Therefore, before the total rejection of a pairwise comparison

matrix with an inconsistency level above a prescribes acceptance threshold, it may be

worth investigating whether it is possible to improve the inconsistency of the matrix

to an acceptable level by performing fewer pairwise comparisons.

The paper will concentrate on the following problem: for a given A ∈ Pn, inconsis-

tency index φn and acceptance level αn, what is the minimal number of the elements of

matrix A that by modifying these elements, and of course their reciprocals, the pairwise

comparison matrix can be made acceptable. We shall show that under a slight bound-

edness assumption, this can be achieved by solving a nonlinear mixed 0-1 optimization

problem. If it comes out that the matrix can be turned into an acceptable one by mod-

ifying relatively few elements, then it may be a case when a more-or-less consistent

evaluator was less attentive at these few elements, or a data-recording error happened.

So it may be worth re-evaluating these elements. Of course, if the the evaluator insists

on the previous values, or the acceptable inconsistency threshold cannot be reached

with the new values, then this approach was unsuccessful: all pairwise comparisons

are to be evaluated again. If however after the revision of the critical elements, the

inconsistency level of the modified matrix is already acceptable, then we can continue

the decision process with it.

Concerning the investigations above, when solving the nonlinear mixed 0-1 pro-

gramming problems, it is very beneficial if the nonlinear optimization problems ob-

tained after the relaxation of the 0-1 variables are convex optimization problems. In

the convex case several sophisticated methods and softwares are available, while in

the nonconvex case methodological and implementation difficulties may arise. Since

log Cn is a linear subspace, Cn is a nonconvex manifold in R
n×n. One can immediately

conclude that it is better to investigate the convexity issues in the logarithmized space.

Several proposals of inconsistency indices are known, see the overviews of Brunelli

and Fedrizzi (2011, 2013b) and Brunelli et al. (2013a) for detailed lists and properties.

This paper focuses on three well-known inconsistency indices. They are CR proposed

by Saaty (1980), CM proposed by Koczkodaj (1993) and slightly simplified in Duszak

and Koczkodaj (1994), and CI proposed by Peláez and Lamata (2003). The properties

and relationship of the fundamental indices CR and CM were also studied in Bozóki

and Rapcsák (2008). In this paper we point out that for the inconsistency indices in

our focus, the nonlinear mixed 0-1 optimization problems mentioned above can be

formulated in the logarithmized space, and appropriate convexity properties hold on

them. We show that CR and CI are convex function in the logarithmized space, and

CM is quasiconvex, but can be transformed into a convex function by applying a

suitable strictly monotone univariate function on it.
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This paper is in a close relation to an earlier paper of the authors (Bozóki et

al., 2011b). In the latter paper we investigated the special case when the acceptance

threshold αn is 0, i.e. the modified pairwise comparison matrix must be consistent. No

inconsistency indices were needed for this investigation, simple graph theoretic ideas

were applied. Unfortunately, the technique applied for αn = 0 cannot be extended to

the general case, therefore, a new approach is proposed in this paper.

We also mention that some of the issues investigated in this paper were already

considered, in Hungarian, in Bozóki et al. (2012).

Since inconsistent matrices are in the focus of this paper, and for n = 1 and n = 2

the pairwise comparison matrices are consistent, we shall assume in the sequel, without

loss of generality, that n ≥ 3.

In Section 2, the optimization problems to be solved are presented in a general

form. The general issues are specialized and investigated for the inconsistency indices

CR of Saaty, CM of Koczkodaj, and CI proposed by Peláez and Lamata in Sections

3 through 5, respectively. A numerical example is presented in Section 6.

2 The general form of the optimization problems

Let φn be an inconsistency index and αn be an acceptance threshold, and let

An(φn, αn) = {A ∈ Pn | φn(A) ≤ αn} (5)

denote the set of n × n pairwise comparison matrices with inconsistency φn not ex-

ceeding threshold αn. Let A, Â ∈ Pn and

d(A, Â) = |{(i, j) : 1 ≤ i < j ≤ n, aij 6= âij}| (6)

denote the number of matrix elements above the main diagonal, where matrices A and

Â differ from each other. By reciprocity, the number of different elements is the same

as in positions below the main diagonal.

Consider pairwise comparison matrix A ∈ Pn with φn(A) > αn as it is not accept-

able in terms of inconsistency. We want to calculate the minimal number of matrix

elements above the main diagonal to be modified in order to make matrix acceptable

(elements below the main diagonal are determined by the elements above the main

diagonal). That is to solve the optimization problem

min d(A, Â)

s.t. Â ∈ An(φn, αn),
(7)

where the elements above the main diagonal of Â are variables.

We could also ask the minimal inconsistency of A ∈ Pn matrix can be reached by

modifying at most K elements and their reciprocals. The optimization problem is

min α

s.t. d(A, Â) ≤ K,

Â ∈ An(φn, α),

(8)

where α and the elements above the main diagonal of Â are variables.
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Problems (7) and (8) can be formulated in logarithmic space:

logAn(φn, αn) = {X ∈ logPn | φn(expX) ≤ αn}, (9)

therefore (7) is equivalent to

min d(log A, X)

s.t. X ∈ logPn,

φn(expX) ≤ αn,

(10)

where elements above the main diagonal of X are variables. The first constraint in (10)

means that X belongs to the subspace of skew-symmetric matrices. In this paper we

show that the second, nonlinear inequality is a convex constraint in case of inconsistency

indices CR (Saaty 1980), CM (Koczkodaj, 1993; Koczkodaj and Szwarc, 2013) and

CI (Peláez and Lamata, 2003).

Problem (8) can be rewritten in the same way as above:

min α

s.t. d(log A, X) ≤ K,

X ∈ logPn,

φn(expX) ≤ α,

(11)

where α and elements above the main diagonal of X are variables.

The objective function d can be replaced by using the well-known “Big M” method.

Assume that M ≥ 1 is given as an upper bound of the values of the elements in A ∈ Pn

and the computed Â ∈ Pn matrices, which is determined as the optimal solution of

problems (7) and (8), i.e.,

1/M ≤ aij ≤ M, 1/M ≤ âij ≤ M, i, j = 1, . . . , n. (12)

We can find such an upper bound M if we get a bounded interval by knowing the

actual level of φn, which contains at least one optimal solution of problems (7), and

(8).

On the other hand, if a theoretical upper bound M is not given, then a reasonable

bound M is usually determined on the values of the pairwise comparison matrices in

every specific problem. Constraint (12) can be described as

A, Â ∈ [1/M, M ]n×n (13)

in matrix form, and if the condition (13) associated with Â is attached to problems (7)

and also (8), we get

min d(A, Â)

s.t. Â ∈ An(φn, αn) ∩ [1/M, M ]n×n,
(14)

and, respectively,
min α

s.t. d(A, Â) ≤ K,

Â ∈ An(φn, α) ∩ [1/M, M ]n×n.

(15)

Introduce M̄ = log M , problems (14) and (15) become equivalent to

min d(log A,X)

s.t. X ∈ logPn ∩ [−M̄ , M̄ ]n×n,

φn(expX) ≤ αn,

(16)



6

and
min α

s.t. d(log A,X) ≤ K,

X ∈ logPn ∩ [−M̄ , M̄ ]n×n,

φn(expX) ≤ α.

(17)

in the logarithmic space.

The “Big M” method can be applied for (16) and (17). Let Ā = log A, and introduce

binary variables yij ∈ {0, 1}, 1 ≤ i < j ≤ n. Problem (16) can be altered by using

Ā ∈ [−M̄ , M̄ ]n×n into the following mixed 0-1 programming problem:

min
n−1
∑

i=1

n
∑

j=i+1
yij

s.t. φn(expX) ≤ αn,

xij = −xji, 1 ≤ i ≤ j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(18)

The optimal value of (18) gives the minimal number of the matrix elements above

the main diagonal to be modified in order to achieve φn ≤ αn. In the optimal solution,

yij = 1 indicates the matrix elements that (and their reciprocal pairs) are modified,

and expxij gives a feasible value of these elements.

Problem (18) may have multiple optimal solutions with respect to the binary vari-

ables. If all of them are of interest, we list them one by one as follows. Assume that L∗

is the optimum value of the problem (18), y∗ij , 1 ≤ i < j ≤ n, is an optimal solution

and I∗0 = {(i, j) | y∗ij = 0, 1 ≤ i < j ≤ n}. By adding the constraint

n−1
∑

i=1

n
∑

j=i+1

yij = L∗ (19)

to (18) we can ensure, that the optimal solutions of (18) can only be the feasible

solutions of (18)-(19).

The addition of constraint
∑

(i,j)∈I∗0

yij ≥ 1 (20)

excludes the already known solution from further search. If problem (18)-(19)-(20) has

no feasible solution, then all optimal solutions of (18) have been found. Otherwise,

each recently found optimal solution brings a constraint as (20), and resolve (18)-(19)-

(20). The algorithm stops in a finite number of steps, resulting in all optimal solutions

through binary variables (18).

Problem (17) can also be rewritten as in (18):

min α

s.t. φn(expX) ≤ α,
n−1
∑

i=1

n
∑

j=i+1
yij ≤ K,

xij = −xji, 1 ≤ i ≤ j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(21)
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If φn(expX) is a convex function of the elements (above the main diagonal) of X, then

the relaxations of (18) and (21) are convex optimization problems, consequently, (18)

and (21) are mixed 0-1 convex problems.

The proposed approach does not serve to produce any priority vector. It supplies

alarming function; it signals that it is possible that in the course of filling-in the pairwise

comparison matrix, the evaluator gave some wrong values despite his will, say, he

miswrote them. It is possible, but it is not sure. The pairwise comparison matrices

appearing in problems (18) and (21) are only tools. Not at all that in the further

steps of the decision process, one has to work with these matrices. It is the evaluator’s

duty and responsibility to decide if he wants to use the proposed methodology at all.

If he wants it, then he has to choose suitable values α and K. Furthermore, having

known the optimal values of (18) and (21), he has to decide whether he wants to

modify the pairwise comparison matrix, and how if at all. If the evaluator insists on the

values of matrix A, or the acceptable inconsistency threshold cannot be reached with

the new values of the modification, then this approach was unsuccessful: all pairwise

comparisons are to be evaluated again. If however after the revision of the critical

elements, the inconsistency level of the matrix modified by the evaluator is already

acceptable, then the decision process can be continued with it.

3 Inconsistency index CR of Saaty

Saaty (1980) proposed to index the inconsistency of pairwise comparison matrix A

of size n × n by a positive linear transformation of its largest eigenvalue λmax. The

normalized right eigenvector associated to λmax also plays an important role, since

it provides the estimation of the weights in the eigenvector method. However, in this

paper weighting methods are not discussed. Saaty (1977) showed that λmax ≥ n and

λmax = n if and only if A is consistent. Let us generate a large number of random

pairwise comparison matrices of size n×n, where each element above the main diagonal

are chosen from the ratio scale 1/9, 1/8, 1/7, . . . , 1/2, 1, 2, ..., 8, 9 with equal probability.

Take the largest eigenvalue of each matrix and let λmax denote their average value.

Let RIn = (λmax − n)/(n − 1). Saaty defined the inconsistency of matrix A as

CRn(A) =

λmax(A)−n
n−1

RIn

being a positive linear transformation of λmax(A). Then CRn(A) ≥ 0 and CRn(A) = 0

if and only if A is consistent. The heuristic rule of acceptance is CRn ≤ 0.1 for all sizes,

also known as the ten percent rule (Saaty, 1980), supported by Vargas’ (1982) statistical

analysis. However, some refinements are also known: CR3 ≤ 0.05 for 3 × 3 matrices

CR4 ≤ 0.08 for 4 × 4 matrices (Saaty, 1994). Note that any rule of acceptance is

somehow heuristic.

Now we apply the results of Section 2 by setting φn = CRn. Let X ∈ logPn and

let λmax(expX) denote the largest eigenvalue of A = exp X. Then

φn(expX) =
λmax(expX) − n

RIn(n − 1)
. (22)

Bozóki et al. (2010) showed that λmax(expX) is a convex function of the elements of

X, therefore, through (22), φn(expX) is a convex function of the elements of X, too.



8

It is proven that (22) implies that both (18) and (21) are mixed 0-1 convex opti-

mization problems. However, they are still challenging from numerical computational

point of view, since φn(expX) cannot be given in an explicit form as λmax values are

themselves computed by iterative methods (Saaty, 1980). We will show that λmax is

not only a limit of an iterative process, but an optimal solution of a convex optimiza-

tion problem as well. The embedded convex optimization problem can be considered

together the embedding optimization problem.

Harker (1987) described the derivatives of λmax with respect to a matrix element

and recommended to change the element with the largest decrease in λmax. The the-

orems in this section, based on other tools, can be considered as some extensions of

Harker’s idea. Reducing CR, being equivalent to decreasing λmax, is in the focus of Xu

and Wei (1999) and Cao et al. (2008).

A special case of Frobenius theorem is applied (Saaty, 1977; Sekitani and Yamaki,

1999):

Theorem 1. Let A be an n × n irreducibile nonnegative matrix and λmax(A) denote

the maximal eigenvalue of A. Then the following equalities hold

max
w>0

min
i=1,...,n

n
∑

j=1
aijwj

wi
= λmax(A) = min

w>0
max

i=1,...,n

n
∑

j=1
aijwj

wi
. (23)

Since the pairwise comparison matrices are positive, Theorem 1 can be applied.

In order to rewrite the right-hand side of (23), āij = log aij , i, j = 1, . . . , n, and

zi = log wi, i = 1, . . . , n are used:

λmax(A) = min
z

max
i=1,...,n

n
∑

j=1

eāij+zj−zi (24)

The sum of convex exponential functions in the right-hand side (24), furthermore,

their maximum are also convex. Thus, λmax can be determined as the optimum value

of a convex optimization problem, and the form (24) is equivalent to the optimization

problem

min λ s.t.

n
∑

j=1

eāij+zj−zi ≤ λ, i = 1, . . . , n, (25)

where λ and zi, i = 1, . . . , n are variables.

Let αn be given as a threshold of inconsistency index φn = CRn. Then the con-

straint

φn(expX) ≤ αn (26)

from problem (18) can be transformed by using (22) as

λmax(expX) ≤ n + RIn(n − 1)αn. (27)
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Denote α∗
n = n+RIn(n−1)αn. Hence, the formula (24), substituting xij = āij , implies

an equivalent form

n
∑

j=1

exij+zj−zi ≤ α∗
n, i = 1, . . . , n. (28)

Let us replace formula (26) by (28) in problem (18). We get a mixed 0-1 convex

programming problem:

min
n−1
∑

i=1

n
∑

j=i+1
yij

s.t.
n
∑

j=1
exij+zj−zi ≤ α∗

n, i = 1, . . . , n,

xij = −xji, 1 ≤ i ≤ j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(29)

Theorem 2. Let αn denote the acceptance threshold of inconsistency and let

α∗
n = n + RIn(n − 1)αn. Then the optimum value of (29) gives the minimal num-

ber of the elements to be modified above the main diagonal in A (and their reciprocals)

in order to achieve that CRn ≤ αn.

Problem (21) can also be rewritten in case of φn = CRn. In the light of (22), the

minimization of φn is equivalent to the minimization of λmax. Furthermore, program

(25) depending on λmax is used to obtain:

min λ

s.t.
n
∑

j=1
exij+zj−zi ≤ λ, i = 1, . . . , n,

n−1
∑

i=1

n
∑

j=i+1
yij ≤ K,

xij = −xji, 1 ≤ i ≤ j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(30)

Theorem 3. Denote the optimum value of (30) by λopt, and let αopt =
λopt−n

RIn(n−1)
.

Then αopt is the minimal value of inconsistency CRn which can be obtained by the

modification of at most K elements above the main diagonal of A (and their recipro-

cals).
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4 Inconsistency index CM of Koczkodaj

The inconsistency index introduced by Koczkodaj (1993) is based on 3×3 submatrices,

called triads. For the 3 × 3 pairwise comparison matrix





1 a b

1/a 1 c

1/b 1/c 1



 (31)

let

CM(a, b, c) = min

{

1

a

∣

∣

∣

∣

a −
b

c

∣

∣

∣

∣

,
1

b
|b − ac| ,

1

c

∣

∣

∣

∣

c −
b

a

∣

∣

∣

∣

}

.

CM can be extended to larger sizes (Duszak and Koczkodaj, 1994):

CM(A) = max
{

CM(aij , aik, ajk)| 1 ≤ i < j < k ≤ n
}

. (32)

Unlike CRn, the construction above does not contain any parameter depending on n,

so we dispense with the use of the notation CMn. It is easy to see that CM is an

inconsistency index since CM(A) ≥ 0 for any A ∈ Pn, and CM(A) = 0 if and only if

A is consistent.

For a general triad (a, b, c) let

T (a, b, c) = max

{

ac

b
,

b

ac

}

. (33)

It can be shown (Bozóki and Rapcsák, 2008) that there exists a direct relation between

CM and T :

CM(a, b, c) = 1 −
1

T (a, b, c)
, T (a, b, c) =

1

1 − CM(a, b, c)
. (34)

Since T (a, b, c) ≥ 1, we get 0 ≤ CM(a, b, c) < 1, so 0 ≤ CM(A) < 1.

Let (ā, b̄, c̄) denote the logarithmized values of the triad (a, b, c), and let

T̄ (ā, b̄, c̄) = max
{

ā + c̄ − b̄, − (ā + c̄ − b̄)
}

.

Then

T (a, b, c) = exp(T̄ (ā, b̄, c̄)), (35)

CM(a, b, c) = 1 −
1

exp(T̄ (ā, b̄, c̄))
. (36)

It is easy to check that even for triads, CM is not a convex function of the loga-

rithmized matrix elements, thus, if we choose the inconsistency index φn = CM , then

φn(expX) appearing in (18) and (21) is not a convex function of the element of matrix

X. We show however that by using the univariate function

f(t) =
1

1 − t
(37)

being strictly monotone increasing on the interval (−∞, 1), f(φn(expX)) = f(CM(expX))

is already a convex function of the elements of matrix X. Then we can change the con-

straint

φn(expX) ≤ αn
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of problem (18) to the convex constraint

f(φn(expX)) ≤ f(αn).

Also, instead of function φn(expX) appearing in problem (21) we can write f(φn(expX))

directly, and the value f−1(α∗) computed from the optimal value α∗ of the modified

problem is the optimal value of the original problem (21).

To show the statement above, extend the index T defined in (33) for arbitrary n×n

pairwise comparison matrix A:

T (A) = max
{

T (aij , aik, ajk)| 1 ≤ i < j < k ≤ n
}

. (38)

According to (34), used there for triads, there is a strictly monotone increasing func-

tional relationship between CM and T . Consequently,

CM(A) = 1 −
1

T (A)
= f−1(T (A)), T (A) =

1

1 − CM(A)
= f(CM(A)), (39)

where f is the function defined in (37).

By expressing T in the logarithmized space, we get

T (expX) = max
{

max{exij+xjk+xki , e−xij−xjk−xki} | 1 ≤ i < j < k ≤ n
}

. (40)

Since on the right-hand-side of (40) the maximum of convex functions is taken, T (expX)

is a convex function of the elements of matrix X. Consequently, if we choose the in-

consistency index φn = CM , then f(φn(expX)) is already a convex function, and

the problems (18) and (21) modified as shown above are already convex mixed 0-1

optimization problems.

Although CM(expX) is not convex, it is quasiconvex. To prove it, we show that

the lower level sets of CM(expX) are convex. Let β ∈ [0, 1) an arbitrary possible value

of CM(exp X). Since f is strictly monotone increasing, we have

{X ∈ R
n×n | CM(expX) ≤ β} = {X ∈ R

n×n | f(CM(exp X)) ≤ f(β)}.

Due to the convexity of T (expX) = f(CM(exp X)) the above level set are convex,

and this implies the quasiconvexity of CM(expX).

Theorem 4. CM(expX) is quasiconvex on the set of the n × n matrices, and

T (expX) = f(CM(exp X)) is convex, where f is defined in (37).

In the following we show that problems (18) and (21) can be solved in an easier way,

namely, by solving appropriate linear mixed 0-1 optimization problems. By exploiting

the strictly monotone increasing property of the exponential function, (40) can also be

written in the following form:

T (expX) = emax{max{xij+xjk+xki,−xij−xjk−xik}|1≤i<j<k≤n}. (41)

Now, (41) also means that CM(A) can be obtained by determining the maximum of

linear expressions of the elements of matrix Ā = log A and by applying the exponential

function and function f once.
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Theorem 5. (Bozóki et al. 2011a) For any n × n pairwise comparison matrix A,

inconsistency index CM can be obtained from the optimal solution of the following

univariate linear program:

min z

s.t. āij + ājk + āki ≤ z, 1 ≤ i < j < k ≤ n,

−(āij + ājk + āki) ≤ z 1 ≤ i < j < k ≤ n.

(42)

Let zopt be the optimal value of (42). Then CM(A) = 1 − 1
exp(zopt)

.

In the following let αn denote the acceptance threshold associated with the incon-

sistency index φn = CM , and let

α∗
n = log

(

1

1 − αn

)

. (43)

Consider the linear mixed 0-1 optimization problem

min
n−1
∑

i=1

n
∑

j=i+1
yij

s.t. xij + xjk + xki ≤ α∗
n, 1 ≤ i < j < k ≤ n,

−(xij + xjk + xki) ≤ α∗
n, 1 ≤ i < j < k ≤ n,

xij = −xji, 1 ≤ i ≤ j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(44)

Based on the findings above, the following two theorems follow.

Theorem 6. Let αn denote the acceptance threshold of inconsistency and let

α∗
n = log( 1

1−αn
). Then the optimum value of (44) gives the minimal number of the

elements to be modified above the main diagonal in A (and their reciprocals) in order

to achieve that CM ≤ αn.

By some alterations in (44), the following linear mixed 0-1 optimization problem

can be written:

min α

s.t. xij + xjk + xki ≤ α, 1 ≤ i < j < k ≤ n,

−(xij + xjk + xki) ≤ α, 1 ≤ i < j < k ≤ n,
n−1
∑

i=1

n
∑

j=i+1
yij ≤ K,

xij = −xji, 1 ≤ i ≤ j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(45)

Theorem 7. Let αopt denote the optimum value of (45). Then 1 − 1
exp(αopt)

is the

minimal value of inconsistency CM which can be obtained by the modification of at

most K elements above the main diagonal of A (and their reciprocals).
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Recently, in Koczkodaj and Szwarc (2013), a new formula was proposed instead

of the inconsistency index CM used in this section. It is however easy to show that

by using the new form of the index, we would get practically the same optimization

problems that were presented above.

Contrary to other inconsistency indices, Koczkodaj’s CM has an advantageous

property. Namely, for a pairwise comparison matrix A, it localizes the triad(s) where

the value of CM(A) is attained. Consequently, if the value of CM(A) is above an

acceptance threshold, then at least one element of every triad with value of CM above

the acceptance threshold must be modified in order that the value of CM of the

modified matrix be below the acceptance threshold. This also means that if the high

level of inconsistency index is caused by some typos, and otherwise the matrix was

acceptable, then at least one typo can be found in any triad with CM above the

threshold. This can be very beneficial, when one tries to find the typos.

5 Inconsistency index CI of Peláez and Lamata

Similarly to CM , the inconsistency index CI proposed by Peláez and Lamata (2003)

is also based on triads of form (31). It is easy to see that the determinant of the triad

(31) is nonnegative, and it is zero if and only if the triad is consistent. Based on this

interesting property, Peláez and Lamata (2003) proposed to characterize the inconsis-

tency of a pairwise comparison matrix A ∈ Pn by the average of the determinants of

the triads of matrix A:

CIn(A) =











det(A), for n = 3,

1
NT (n)

NT (n)
∑

i=1
det(Γi), for n > 3,

(46)

where Γi, i = 1, . . . , NT (n) denote the triads of matrix A, and NT (n) =
(

n
3

)

is the

number of triads in A.

We show that CI is a convex function of the logarithmized matrix elements, thus

if the inconsistency index φn = CIn is chosen, then φn(expX) appearing in problems

(18) and (21) is a convex function of the elements of matrix X.

The determinant of triad Γ ∈ P3 comparing objects (i, j, k) can be written as

det(Γ ) =
aik

aijajk
+

aijajk

aik
− 2. (47)

Let X = log Γ ∈ logP3, i.e., Γ = expX. Equation (47) can be reformulated as a

convex function of the elements of X:

det(expX) = exik−xij−xjk + exij+xjk−xik − 2. (48)

Let αn be a given acceptance threshold for the inconsistency index φn = CIn.

According to (46) and (48), the constraint

φn(expX) ≤ αn (49)

appearing in (18) can be expressed as

1
(

n
3

)

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

(

exik−xij−xjk + exij+xjk−xik − 2
)

≤ αn. (50)
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By denoting α∗
n = (αn + 2)

(

n
3

)

, (50) can be simplified as

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

(

exik−xij−xjk + exij+xjk−xik

)

≤ α∗
n, (51)

and inserting it into (18), we get the mixed 0-1 convex optimization problem

min
n−1
∑

i=1

n
∑

j=i+1
yij

s.t.
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

(

exik−xij−xjk + exij+xjk−xik
)

≤ α∗
n,

xij = −xji, 1 ≤ i < j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n.

(52)

Theorem 8. Let αn denote the acceptance threshold of inconsistency and let

α∗
n = (αn + 2)

(n
3

)

. Then the optimum value of (52) gives the minimal number of

the elements to be modified above the main diagonal in A (and their reciprocals) in

order to achieve that CI ≤ αn.

In the same way as for other inconsistency indices, the following mixed 0-1 convex

optimization problem can also be considered:

min α

s.t.
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

(

exik−xij−xjk + exij+xjk−xik
)

≤ α,

xij = −xji, 1 ≤ i < j ≤ n,

−M̄ ≤ xij ≤ M̄, 1 ≤ i < j ≤ n,

−2M̄yij ≤ xij − āij ≤ 2M̄yij , 1 ≤ i < j ≤ n,

yij ∈ {0, 1}, 1 ≤ i < j ≤ n,
n−1
∑

i=1

n
∑

j=i+1
yij ≤ K.

(53)

Theorem 9. Let αopt denote the optimum value of (53). Then
αopt

(n

3)
−2 is the minimal

value of inconsistency CI which can be obtained by the modification of at most K

elements above the main diagonal of A (and their reciprocals).

6 A numerical example

Our approach is also presented on a classic numerical example from the book of Saaty

(1980), for the inconsistency index CR. Table 1 contains pairwise comparison values of

six cities concerning their distances from Philadelphia. As an example, the evaluator

judged that the distance between London and Philadelphia is five times greater than

that between Chicago and Philadelphia.
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Table 1. Comparison of distances of cities from Philadelphia
Cairo Tokyo Chicago San Francisco London Montreal

Cairo 1 1/3 8 3 3 7

Tokyo 3 1 9 3 3 9

Chicago 1/8 1/9 1 1/6 1/5 2

San Francisco 1/3 1/3 6 1 1/3 6

London 1/3 1/3 5 3 1 6

Montreal 1/7 1/9 1/2 1/6 1/6 1

Let A denote the pairwise comparison matrix concerning Table 1. We get that

λmax(A) = 6.4536, and from RI6 = 1.24, also CR(A) = 0.0732. Since the value of

CR(A) is significantly below the 10% threshold, we can consider the inconsistency of

A acceptable.

Let A(1) denote the matrix obtained from A by exchanging the elements a1,2 (and

a2,1). This is a typical mistake at filling-in a pairwise comparison matrix. For the

matrix A(1), we get CR(A(1)) = 0.0811. Therefore, although the level of inconsistency

of A(1) has increased as a consequence of the data-recording error, it is still below the

acceptance level of 10%. In this case the proposed methodology is not able to detect

the mistake, and A(1) is still accepted.

Consider now the case when a1,3 and a3,1 are exchanged, say by accident, in the

matrix A. Let A(2) denote the matrix obtained in this way. Then CR(A(2)) = 0.5800,

which is well over the acceptance level of 10%, and it refers to a rough inconsistency

in the matrix. By solving the corresponding problem (29), we obtain that the inconsis-

tency of A(2) can be pushed below the critical 10% by modifying a single element (and

its reciprocal). This element is just in the spoilt position a1,3. It can also be shown

that this is the single optimal solution to problem (29) considering the 0-1 variables.

Consequently, the proposed methodology has detected the single possible element for

the case of correcting in a single position (and in its reciprocal). It also turned out that

this single position is just the one of the values exchanged by accident.

In the previous example the spoilt matrix caused a rough increase of the incon-

sistency. In this view, it is not surprising that the proposed method offers a unique

way of repairing. However, at smaller increase of inconsistency the situation is not that

obvious.

Assume now that the element a1,3 of matrix A is changed to 2 instead of the value

1/8 of the previous example. This is a smaller difference in relation to the original

value 8, the increase of the inconsistency of the modified matrix, denoted by A(3),

is also less: CR(A(3)) = 0.1078. The inconsistency of A(3) barely exceeds the critical

level 10%, therefore, one would expect that by the modification of a single element can

make the inconsistency decrease below 10%, and also that several positions are eligible

for this purpose. Indeed, the optimal value of the relating problem (29) is 1, and by

resolving the problem after adding the constraints (19) and (20) we find that problem

(29) has 6 different optimal solutions according to the binary variables. Namely, the

inconsistency of matrix A(3) decreases below 10% not only by modifying a1,3, but also

by modifying any single element of {a1,4, a1,5, a2,6, a3,4, a4,5}. In the ideal case, the

evaluator spots the data-recording error in position a1,3 immediately. If not, then s/he

may have to reconsider the evaluation of each of the 6 positions, but it is still fewer

than the 15 possible positions in the upper triangular part of the matrix.
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7 Conclusions

From mathematical aspect, the paper proposes an approach to solve the following opti-

mization problems. Given a pairwise comparison matrix with inconsistency value above

an acceptance threshold, find the minimal number of matrix elements, the appropri-

ate modification of which makes the matrix acceptable. On the other hand, given the

maximal number of modifiable matrix elements, the aim is to find the minimal level

of inconsistency that can be achieved. In both cases the solution is derived from a

nonlinear mixed 0-1 optimization problem.

From practical aspect, this approach can be very useful in a situation when a more-

or-less consistent evaluator was less attentive at these few elements, or a data-recording

error happened. The proposed methodology indicates that the above situation is pos-

sible, but it neither finds, nor corrects the critical elements. It is the evaluator’s duty

to find and correct them, if at all he decides to use the methodology.

This paper can be considered as a starting step of future research. The three incon-

sistency indices specified in the paper have the beneficial property that the relaxation

of both (18) and (21) is a convex optimization problems. The similar convexity or non-

convexity properties should also be reviewed for other inconsistency indices, e.g. those

listed in Brunelli and Fedrizzi (2011, 2013b) and Brunelli et al. (2013a).

The investigation of the functional relationship between inconsistency indices may

also be a perspective topic of further research. Some results can already be found in

Bozóki and Rapcsák (2008), Brunelli et al. (2013a), and Koczkodaj and Szwarc (2013).

By integrating some useful properties, e.g. the localizing property of Koczkodaj’s index

into other inconsistency approaches, one may construct useful tools.
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Bozóki S, Fülöp J, Koczkodaj WW (2011a) LP-based consistency-driven supervision for

incomplete pairwise comparison matrices. Mathematical and Computer Modelling

54(1-2):789–793
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Bozóki S, Fülöp J, Poesz A (2012) Convexity properties related to pairwise comparison

matrices of acceptable inconsistency and applications, (in Hungarian, Elfogadható
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Bozóki S, Fülöp J, Rónyai L (2010) On optimal completions of incomplete pairwise

comparison matrices. Mathematical and Computer Modelling 52(1-2):318–333
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