8 research outputs found

    Multimodal contrastive learning for diagnosing cardiovascular diseases from electrocardiography (ECG) signals and patient metadata

    Full text link
    This work discusses the use of contrastive learning and deep learning for diagnosing cardiovascular diseases from electrocardiography (ECG) signals. While the ECG signals usually contain 12 leads (channels), many healthcare facilities and devices lack access to all these 12 leads. This raises the problem of how to use only fewer ECG leads to produce meaningful diagnoses with high performance. We introduce a simple experiment to test whether contrastive learning can be applied to this task. More specifically, we added the similarity between the embedding vectors when the 12 leads signal and the fewer leads ECG signal to the loss function to bring these representations closer together. Despite its simplicity, this has been shown to have improved the performance of diagnosing with all lead combinations, proving the potential of contrastive learning on this task.Comment: Accepted for presentation at the Midwest Machine Learning Symposium (MMLS 2023), Chicago, IL, US

    Enhanced Protein Adsorption Capacity of Macroporous Pectin Particles with High Specific Surface Area and an Interconnected Pore Network

    No full text
    There has been much interest in developing protein adsorbents using nanostructured particles, which can be engineered porous materials with fine control of the surface and pore structures. A significant challenge in designing porous adsorbents is the high percentage of available binding sites in the pores owing to their large surface areas and interconnected pore networks. In this study, continuing the idea of using porous materials derived from natural polymers toward the goal of sustainable development, porous pectin particles are reported. The template-assisted spray drying method using calcium carbonate (CaCO3) as a template for pore formation was applied to prepare porous pectin particles. The specific surface area was controlled from 177.0 to 222.3 m2 g-1 by adjusting the CaCO3 concentration. In addition, the effects of a macroporous structure, the specific surface area, and an interconnected pore network on the protein (lysozyme) adsorption capacity and adsorption mechanism were investigated. All porous pectin particles performed rapid adsorption (∼65% total capacity within 5 min) and high adsorption capacity, increasing from 1543 to the highest value of 2621 mg g-1. The results are attributed to the high percentage of available binding sites located in the macropores owing to their large surface areas and interconnected pore networks. The macroporous particles obtained in this study showed a higher adsorption capacity (2621 mg g-1) for lysozyme than other adsorbents. Moreover, the rapid uptake and high performance of this material show its potential as an advanced adsorbent for various macromolecules in the food and pharmaceutical fields

    Estimating national and subnational nutrient intake distributions of global diets.

    No full text
    BACKGROUND: Access to high-quality dietary intake data is central to many nutrition, epidemiology, economic, environmental, and policy applications. When data on individual nutrient intakes are available, they have not been consistently disaggregated by sex and age groups, and their parameters and full distributions are often not publicly&nbsp;available. OBJECTIVES: We sought to derive usual intake distributions for as many nutrients and population subgroups as possible, use these distributions to estimate nutrient intake inadequacy, compare these distributions and evaluate the implications of their shapes on the estimation of inadequacy, and make these distributions publicly&nbsp;available. METHODS: We compiled dietary data sets from 31 geographically diverse countries, modeled usual intake distributions for 32 micronutrients and 21 macronutrients, and disaggregated these distributions by sex and age groups. We compared the variability and skewness of the distributions and evaluated their similarity across countries, sex, and age groups. We estimated intake inadequacy for 16 nutrients based on a harmonized set of nutrient requirements and bioavailability estimates. Last, we created an R package-nutriR-to make these distributions freely available for users to apply in their own&nbsp;analyses. RESULTS: Usual intake distributions were rarely symmetric and differed widely in variability and skewness across nutrients and countries. Vitamin intake distributions were more variable and skewed and exhibited less similarity among countries than other nutrients. Inadequate intakes were high and geographically concentrated, as well as generally higher for females than males. We found that the shape of usual intake distributions strongly affects estimates of the prevalence of inadequate&nbsp;intakes. CONCLUSIONS: The shape of nutrient intake distributions differs based on nutrient and subgroup and strongly influences estimates of nutrient intake inadequacy. This research represents an important contribution to the availability and application of dietary intake data for diverse subpopulations around the&nbsp;world.</p
    corecore