61 research outputs found

    Measurement of Ultrashort Optical Pulses

    Get PDF

    Absolute frequency measurements with a robust, transportable ^{40}Ca^{+} optical clock

    Full text link
    We constructed a transportable 40Ca+ optical clock (with an estimated minimum systematic shift uncertainty of 1.3*10^(-17) and a stability of 5*10^(-15)/sqrt{tau} ) that can operate outside the laboratory. We transported it from the Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan to the National Institute of Metrology, Beijing. The absolute frequency of the 729 nm clock transition was measured for up to 35 days by tracing its frequency to the second of International System of Units. Some improvements were implemented in the measurement process, such as the increased effective up-time of 91.3 % of the 40Ca+ optical clock over a 35-day-period, the reduced statistical uncertainty of the comparison between the optical clock and hydrogen maser, and the use of longer measurement times to reduce the uncertainty of the frequency traceability link. The absolute frequency measurement of the 40Ca+ optical clock yielded a value of 411042129776400.26 (13) Hz with an uncertainty of 3.2*10^(-16), which is reduced by a factor of 1.7 compared with our previous results. As a result of the increase in the operating rate of the optical clock, the accuracy of 35 days of absolute frequency measurement can be comparable to the best results of different institutions in the world based on different optical frequency measurements.Comment: 15 pages, 5 figure

    QSAR analysis of substituted benzylamino- and heterocyclylmethylamino-carbodithioate derivatives of 4-(3H)-quinazolinone using CoMFA and SCORE2.0

    Get PDF
    Thymidylate synthase (TS) is a critical enzyme for DNA biosynthesis and many nonclassical lipophilic antifolates targeting this enzyme are quite efficient and encouraging as antitumor drugs. In this paper, the binding model of 14 antifolates of substituted benzylamino- and heterocyclylmethylamino-carbodithioate derivatives of 4-(3H)-quinazolinone with TS is examined using molecular simulation methods-FlexiDock and SCORE2.0. The resulting conformation and orientation of these antifolates are directly applied to CoMFA study. The robust QSAR model, its three-dimensional contour map, and binding score of these antifolates derived from SCORE2.0 provide guidelines for structural optimization of current antifolates. The experiment indicates that deletion of cancer chemopreventive structure of dithiocarbamate is unfavorable for interaction between TS and antifolates

    Effects of Drying Methods on the Volatile Compounds of Alliummongolicum Regel

    No full text
    Allium mongolicum Regel (AMR) is a traditional Mongolian food. Various drying methods play an important role in foodstuff flavor. However, the effect of different drying methods on AMR is limited. In this study, freeze drying (FD), vacuum drying (VD), and hot-air drying (HAD) were applied to dry fresh AMR to a moisture content of 8% (wet basis); headspace gas chromatography mass spectrometry was adopted to identify volatile compounds in AMR; and principal component analysis and fingerprint similarity analysis based on the Euclidean distance was used to distinguish the fresh and three dried treatments. In total, 113 peaks were detected and 102 volatile compounds were identified. Drying causes significant changes to the amounts of volatile compounds in AMR, and the drying method plays a key role in determining which volatile compounds appear. Compared to FD, VD and HAD were more appropriate for drying AMR because the volatile compounds after VD and HAD were closer to those of fresh AMR. These findings can provide a scientific basis to help to preserve future seasonal functional food and aid in Mongolian medicine production

    A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    No full text
    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists

    Game Analysis of City Bus Priority

    No full text

    A Two-Phase Numerical Model of Well Test Analysis to Characterize Formation Damage in Near-Well Regions of Injection Wells

    No full text
    Formation damage usually occurs in near-well regions for injection wells completed in offshore oilfields under the development of line drive patterns. However, current works on characterizing the damage by well test analysis were basically focused on using single-phase analogy to solve two-phase flow issues, resulting in errors on the diagnosis and interpretation of transient pressure data. In this paper, we developed a two-phase model to simulate the pressure transient behavior of a water injection well in a multiwell system. To solve the model more efficiently, we used the finite volume method to discretize partially differential flow equations in a hybrid grid system, including both Cartesian and radial meshes. The fully implicit Newton-Raphson method was also employed to solve the equations in our model. With this methodology, we compared the resulting solutions with a commercial simulator. Our results keep a good agreement with the solutions from the simulator. We then graphed the solutions on a log-log plot and concluded that the effects of transitional zone and interwell interference can be individually identified by analyzing specific flow regimes on the plot. Further, seven scenarios were raised to understand the parameters which dominate the pressure transient behavior of these flow regimes. Finally, we showed a workflow and verified the applicability of our model by demonstrating a case study in a Chinese offshore oilfield. Our model provides a useful tool to reduce errors in the interpretation of pressure transient data derived from injection wells located in a line drive pattern
    • …
    corecore