3,620 research outputs found

    PGB pair production at LHC and ILC as a probe of the topcolor-assisted technicolor models

    Full text link
    The topcolor-assisted technicolor (TC2) model predicts some light pseudo goldstone bosons (PGBs), which may be accessible at the LHC or ILC. In this work we study the pair productions of the charged or neutral PGBs at the LHC and ILC. For the productions at the LHC we consider the processes proceeding through gluon-gluon fusion and quark-antiquark annihilation, while for the productions at the ILC we consider both the electron-positron collision and the photon-photon collision. We find that in a large part of parameter space the production cross sections at both colliders can be quite large compared with the low standard model backgrounds. Therefore, in future experiments these productions may be detectable and allow for probing TC2 model.Comment: 26 pages, 16 figures. slight changes in the text; notations for curves changed; references adde

    Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models

    Full text link
    Various new physics models predict a light CP-odd Higgs boson (labeled as aa) and open up new decay modes for Z-boson, such as ZfˉfaZ \to \bar{f} f a, ZaγZ\to a\gamma and ZaaaZ\to aaa, which could be explored at the GigaZ option of the ILC. In this work we investigate these rare decays in several new physics models, namely the type-II two Higgs doublet model (type-II 2HDM), the lepton-specific two Higgs doublet model (L2HDM), the nearly minimal supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric standard model (NMSSM). We find that in the parameter space allowed by current experiments, the branching ratios can reach 10410^{-4} for ZfˉfaZ \to \bar{f} f a (f=b,τf=b,\tau), 10910^{-9} for ZaγZ\to a\gamma and 10310^{-3} for ZaaaZ\to aaa, which implies that the decays ZfˉfaZ \to \bar{f} f a and ZaaaZ \to a a a may be accessible at the GigaZ option. Moreover, since different models predict different patterns of the branching ratios, the measurement of these rare decays at the GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected

    Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC ?

    Full text link
    Due to the limited statistics so far accumulated in the Higgs boson search at the LHC, the Higgs boson property has not yet been tightly constrained and it is still allowed for the Higgs boson to decay invisibly to dark matter with a sizable branching ratio. In this work, we examine the Higgs decay to neutralino dark matter in low energy SUSY by considering three different models: the minimal supersymmetric standard model (MSSM), the next-to-minimal supersymmetric standard models (NMSSM) and the nearly minimal supersymmetric standard model (nMSSM). Under current experimental constraints at 2-sigma level (including the muon g-2 and the dark matter relic density), we scan over the parameter space of each model. Then in the allowed parameter space we calculate the branching ratio of the SM-like Higgs decay to neutralino dark matter and examine its observability at the LHC by considering three production channels: the weak boson fusion VV->h, the associated production with a Z-boson pp->hZ+X or a pair of top quarks pp->htt_bar+X. We find that in the MSSM such a decay is far below the detectable level; while in both the NMSSM and nMSSM the decay branching ratio can be large enough to be observable at the LHC.Comment: Version in JHE

    Long-lived charged Higgs at LHC as a probe of scalar Dark Matter

    Full text link
    We study inert charged Higgs boson H±H^\pm production and decays at LHC experiments in the context of constrained scalar dark matter model (CSDMM). In the CSDMM the inert doublet and singlet scalar's mass spectrum is predicted from the GUT scale initial conditions via RGE evolution. We compute the cross sections of processes ppH+H,H±Si0pp\to H^+H^-,\, H^\pm S_i^0 at the LHC and show that for light H±H^\pm the first one is dominated by top quark mediated 1-loop diagram with Higgs boson in s-channel. In a significant fraction of the parameter space H±H^\pm are long-lived because their decays to predominantly singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, H±SDM, NLff,H^\pm\to S_{\text{DM, NL}} ff', are suppressed by the small singlet-doublet mixing angle and by the moderate mass difference ΔM=MH+MDM. \Delta M=M_{H^+}-M_{\text{DM}} . The experimentally measurable displaced vertex in H±H^\pm decays to leptons and/or jets and missing energy allows one to discover the H+HH^+H^- signal over the huge W+WW^+W^- background. We propose benchmark points for studies of this scenario at the LHC. If, however, H±H^\pm are short-lived, the subsequent decays SNLSDMffˉS_{\text{NL}}\to S_{\text{DM}} f\bar f necessarily produce additional displaced vertices that allow to reconstruct the full H±H^\pm decay chain.Comment: 15 pages, 5 figure

    A 125 GeV SM-like Higgs in the MSSM and the γγ\gamma \gamma rate

    Get PDF
    We consider the possibility of a Standard Model (SM)-like Higgs in the context of the Minimal Supersymmetric Standard Model (MSSM), with a mass of about 125 GeV and with a production times decay rate into two photons which is similar or somewhat larger than the SM one. The relatively large value of the SM-like Higgs mass demands stops in the several hundred GeV mass range with somewhat large mixing, or a large hierarchy between the two stop masses in the case that one of the two stops is light. We find that, in general, if the heaviest stop mass is smaller than a few TeV, the rate of gluon fusion production of Higgs bosons decaying into two photons tends to be somewhat suppressed with respect to the SM one in this region of parameters. However, we show that an enhancement of the photon decay rate may be obtained for light third generation sleptons with large mixing, which can be naturally obtained for large values of tanβ\tan\beta and sizable values of the Higgsino mass parameter.Comment: 14 pages, 4 figures. Corrected small typos and added reference

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    Get PDF
    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration
    corecore