783 research outputs found

    Scenario Forecasting for Global Tourism

    Get PDF
    This study provides innovative forecasts of the probabilities of certain scenarios of tourism demand. The scenarios of interest are constructed in relation to tourism growth and economic growth. The probability forecasts based on these scenarios provide valuable information for destination policy makers. The time-varying parameter panel vector autoregressive (TVP-PVAR) model is adopted for scenario forecasting. Both the accuracy rate and the Brier score are used to evaluate the forecasting performance. A global set of 25 tourism destinations is empirically examined, and the results confirm that the TVP-PVAR model with a time-varying error covariance matrix is generally a promising tool for forecasting. Our study contributes to tourism forecasting literature in advocating the use of scenario forecasting to facilitate industry decision making in situations wherein forecasts are defined by two or more dimensions simultaneously. In addition, it is the first study to introduce the TVP-PVAR model to tourism demand forecasting

    Influence and Enlightenment of New Media Age on Ideological and Political Education of College Students

    Get PDF
    This paper analyzes new problems and new challenges faced by ideological and political education of college students in new media age and organizes outstanding features and corresponding effects in allusion to development status of college ideological and political education and the plight faced by the thinking mode. On this basis, this paper seeks breakthrough of thinking mode in combination of actual conditions of ideological and political education of college students in new media age, mainly rethinks and discusses profoundly discourse reform and education content structure optimization so as to better adapt urgent needs of college ideological and political education in new media age and make efforts to construct practice approach system for college ideological and political education

    GW25-e3339 Exhaustive Swimming Induces Cardiac Lesion in Rats

    Get PDF

    Sources and formation of carbonaceous aerosols in Xi'an, China:Primary emissions and secondary formation constrained by radiocarbon

    Get PDF
    To investigate the sources and formation mechanisms of carbonaceous aerosols, a major contributor to severe particulate air pollution, radiocarbon (C-14) measurements were conducted on aerosols sampled from November 2015 to November 2016 in Xi'an, China. Based on the C-14 content in elemental carbon (EC), organic carbon (OC) and water-insoluble OC (WIOC), contributions of major sources to carbonaceous aerosols are estimated over a whole seasonal cycle: primary and secondary fossil sources, primary biomass burning, and other non-fossil carbon formed mainly from secondary processes. Primary fossil sources of EC were further sub-divided into coal and liquid fossil fuel combustion by complementing C-14 data with stable carbon isotopic signatures. The dominant EC source was liquid fossil fuel combustion (i.e., vehicle emissions), accounting for 64 % (median; 45 %-74 %, interquartile range) of EC in autumn, 60 % (41 %-72 %) in summer, 53 % (33 %-69 %) in spring and 46 % (29 %-59 %) in winter. An increased contribution from biomass burning to EC was observed in winter (similar to 28 %) compared to other seasons (warm period; similar to 15 %). In winter, coal combustion (similar to 25 %) and biomass burning equally contributed to EC, whereas in the warm period, coal combustion accounted for a larger fraction of EC than biomass burning. The relative contribution of fossil sources to OC was consistently lower than that to EC, with an annual average of 47 +/- 4 %. Non-fossil OC of secondary origin was an important contributor to total OC (35 +/- 4 %) and accounted for more than half of non-fossil OC (67 +/- 6 %) throughout the year. Secondary fossil OC (SOCfossil) concentrations were higher than primary fossil OC (POCfossil) concentrations in winter but lower than POCfossil in the warm period. Fossil WIOC and water-soluble OC (WSOC) have been widely used as proxies for POCfossil and SOCfossil, respectively. This assumption was evaluated by (1) comparing their mass concentrations with POCfossil and SOCfossil and (2) comparing ratios of fossil WIOC to fossil EC to typical primary OC-to-EC ratios from fossil sources including both coal combustion and vehicle emissions. The results suggest that fossil WIOC and fossil WSOC are probably a better approximation for primary and secondary fossil OC, respectively, than POCfossil and SOCfossil estimated using the EC tracer method

    An optimized encoding algorithm for systematic polar codes

    Full text link
    Many different encoding algorithms for systematic polar codes (SPC) have been introduced since SPC was proposed in 2011. However, the number of the computing units of exclusive OR (XOR) has not been optimized yet. According to an iterative property of the generator matrix and particular lower triangular structure of the matrix, we propose an optimized encoding algorithm (OEA) of SPC that can reduce the number of XOR computing units compared with existing non-recursive algorithms. We also prove that this property of the generator matrix could extend to different code lengths and rates of the polar codes. Through the matrix segmentation and transformation, we obtain a submatrix with all zero elements to save computation resources. The proportion of zero elements in the matrix can reach up to 58.5{\%} from the OEA for SPC when the code length and code rate are 2048 and 0.5, respectively. Furthermore, the proposed OEA is beneficial to hardware implementation compared with the existing recursive algorithms in which signals are transmitted bidirectionally
    corecore