153 research outputs found

    Detecting the Scale and Resolution Effects in Remote Sensing and GIS.

    Get PDF
    This study examines the relationship between resolution and fractal dimensions of remotely sensed images. Based on the results of testing for the reliability of the algorithms on hypothetical surfaces, the isarithm algorithm is selected for determining the fractal dimensions of remotely sensed images. This algorithm is then applied to simulated fractal Brownian motion images and four calibrated airborne multispectral remotely sensed image data sets with different true and artificial resolutions for Puerto Rico. The results from applying the fractal method to images at different levels of resolution suggest that the higher the resolution of an image, the higher the fractal dimension of the image and the more complex the image surface. This relationship between resolution and fractal dimension is further verified by results from analysis employing the local variance method for the same data sets; where it is found that the higher the resolution, the higher the local variance or the more complex the image surface. The images with artificial resolutions were found to be unrealistic in simulating images with different resolutions because the aggregate method used in generating these images dose not exactly simulate the sensor\u27s response to resolution changes. The aggregate method has been widely used in image resampling and cautious use of this algorithm is suggested in future studies. The findings show that the fractal method is a useful tool in detecting the scale and resolution effects of remotely sensed images and in evaluating the trade-offs between data volume and data accuracy. More studies employing fractals and other spatial statistics to images with different artificial resolutions generated using better aggregation algorithms are needed in the future in order to further detect the scale and resolution effects in remote sensing and GIS

    Tunable stiffness of electrorheological elastomers by designing mesostructures

    No full text
    Electrorheological elastomers have broad and important applications. While existing studies mostly focus on microstructures of electrorheological elastomers, their mesoscale structures have been rarely investigated. We present a theory on the design of mesostructures of electrorheological elastomers that consist of two phases with different permittivity. We show that the deformation of elastomers can reorient their mesostructures, which consequently results in variations of their effective permittivity, leading to stiffening, softening, or instability of the elastomer. Optimal design of the mesostructures can give giant tunable stiffness. Our theoretical model is further validated by results from numerical simulations.The work was supported by NSF (CMMI-1253495, CMMI-1200515, and DMR-1121107). C.C. acknowledged the financial support from the Australian National Universality by Dean’s Travel Grant Award and Vice Chancellor’s Travel Grant

    Hybrid fundamental solution based finite element method: theory and applications

    Get PDF
    An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified

    Micro-macro Modeling of Advanced Materials by Hybrid Finite Element Method

    Get PDF
    Advanced composite materials are increasingly used in a variety of fields due to their desirable properties. The use of these advanced materials in different applications requires a thorough understanding of the effect of their complex microstructures and the effect of the operating environment on the materials. This requires an efficient, robust and powerful tool that is able to predict the behavior of composites under a variety of loading conditions. This research addresses this problem and develops a new convenient numerical method and framework for users to perform such analyses of composites. In this thesis, the hybrid fundamental solution based finite element method (HFS-FEM) is developed and applied to model composite materials across microscale and macroscale and from single field to multi-field. The basic idea and detailed formulations of the HFS-FEM for elasticity and potential problems are first presented. Then this method is extended to solve general three-dimensional (3D) elasticity problems with body forces and to model anisotropic materials encountered in composite analysis. Standard tests for proposed elements are carried out to assess their performance. Further, an efficient numerical homogenization method based on HFS-FEM is applied to predict the macroscopic elasticity properties and thermal conductivity of heterogeneous composites in micromechanical analysis. The effect of material parameters, such as fiber volume fractions, inclusion shapes and arrangements on the effective coefficients of composites are investigated by means of the proposed micro. mechanical models. Meanwhile, special elements are also proposed for mesh reduction and efficiency improvement in the analyses. Finally, the HFS-FEM method is developed for modeling two-dimensional (2D) and 3D thermoelastic problems. The particular solutions related to the body force and temperature change are approximated using the radial basis function interpolation. The new HFS-FEM is also developed for modeling plane piezoelectric materials in two different formulations: Lekhnitskii formalism and Stroh formalism. Numerical examples are provided for each kind of problems to demonstrate the accuracy, efficiency and versatility of the proposed method

    Experimental and theoretical investigation of magnetorheological elastomers with layered mesostructures

    Get PDF
    Magnetorheological elastomer (MRE) is a type of smart material which can vary its shear modulus rapidly, continuously and reversibly, by the external magnetic field. MRE has attracted increasing attention and been widely used in various applications. Generally it has been created by dispersing magnetic filler particles in polymer matrices. Most current studies are focusing on the microstructures of MRE such as the alignments of iron-filler particles and their effects on tunable moduli. However, the mesoscale structures of MREs have been rarely investigated by now. In this study, we present a theory on the design of mesostructures of MRE composites consisting of two phases of materials with different permeability. We show that the deformation of elastomers can reorient their mesostructures, which consequently results in variations of their effective permeability. Such variations change the magnetostatic potential energies of the elastomers under applied fields, leading to stiffening, softening, or instabilities. We further fabricate composite MREs by embedding metal-sheets into PDMS matrix to test the feasibility of the concept for MRE. Experimental results show that giant tunable stiffness of MREs can be achieved by carefully designing and optimizing their anisotropic mesostructures. The effect of metal-sheets at mesoscale and carbonyl iron particles at microscale can be superimposed together to increase the MR effect of the composite even if the microsized particles are uniformly distributed

    Skid resistance and hydroplaning analysis of rib truck tire

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Initial Assessment of Radiometric Performance of N20 VIIRS Reflective Solar Bands Using Vicarious Approaches

    Get PDF
    The newly launched (November 18, 2017) polar-orbiting satellite of the Joint Polar Satellite System (JPSS-1), now transitioned to NOAA-20, is the follow-on mission to the SNPP (Suomi National Polar-orbiting Partnership) satellite, launched six years ago. NOAA-20 leads SNPP by a half orbit or about 50 minutes. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor onboard both NOAA-20 and SNPP spacecraft with nearly identical band spectral responses. Similar to the heritage sensor MODIS, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) as background reference for calibration. This study provides an initial assessment of calibration of the NOAA-20 VIIRS reflective solar bands (RSB) by inter-comparison with measurements from SNPP VIIRS using various vicarious approaches. The first approach is based on a double difference method using observations from simultaneous nadir overpasses (SNO) with Aqua MODIS. The second is from the collected reflectances over the widely used Liby-4 desert site from 16-day repeatable orbits so each data point has the same viewing geometry relative to the site. The third approach is to use the frequent overpasses over the Dome C snow site. Results of this study provide useful information on NOAA-20 VIIRS post-launch calibration assessment and preliminary analysis of its calibration stability and consistency for the first 6 month

    Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers

    Get PDF
    Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g[superscript −1]), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance.United States. Office of Naval Research (N00014-14-1-0619)National Science Foundation (U.S.) (CMMI-1253495)National Science Foundation (U.S.) (DMR-1121107)National Science Foundation (U.S.) (EECS-1344745

    Single-scatter channel impulse response model of non-line-of-sight ultraviolet communications

    Full text link
    Previous studies on the temporal characteristics of single-scatter transmission in non-line-of-sight (NLOS) ultraviolet communications (UVC) were based on the prolate-spheroidal coordinate system. In this work, a novel single-scatter channel impulse response (CIR) model is proposed in the spherical coordinate system, which is more natural and comprehensible than the prolate-spheroidal coordinate system in practical applications. Additionally, the results of the widely accepted Monte-Carlo (MC)-based channel model of NLOS UVC are provided to verify the proposed single-scatter CIR model. Results indicate that the computational time costed by the proposed single-scatter CIR model is decreased to less than 0.7% of the MC-based one with comparable accuracy in assessing the temporal characteristics of NLOS UVC channels.Comment: 10 pages, 4 figure

    Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed
    corecore