138 research outputs found

    Efficient DCT-MCM Detection for Single and Multi-Antenna Wireless Systems

    Get PDF
    The discrete cosine transform (DCT) based multicarrier modulation (MCM) system is regarded as one of the promising transmission techniques for future wireless communications. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to maintain the subcarrier orthogonality while reducing frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. In this paper, following one of the effective transmission models by which zeros are inserted as guard sequence and the DCT operation at the receiver is replaced by DFT of double length, we reformulate and evaluate three classic detection methods by appropriately processing the post-DFT signals both for single antenna and multiple-input multiple-output (MIMO) DCT-MCM systems. In all cases, we show that with our reformulated detection approaches, DCT-MCM schemes can outperform, in terms of error-rate, conventional OFDM-based systems

    Receiver Design for DCT Based Multicarrier Signals

    Get PDF
    DCT based multicarrier system also known as fast orthogonal frequency division multiplexing (FOFDM) is a promising multicarrier transmission technique that requires half the subcarrier spacing compared to conventional OFDM technique. The signal processing complexity and power consumption of such system is also less due to its real arithmetic operations compared to DFT based system (OFDM) that require complex arithmetic operations. However, unlike OFDM, FOFDM requires a finite impulse response (FIR) front-end pre-filter at the receiver to achieve single-tap equalization for simplifying the receiver design. The receiver design can be further improved using the fact that FOFDM system transmits real valued symbols compared to complex valued symbols in conventional OFDM. This fact enabled us to improve the system performance by exploiting the improperness of such DCT based multicarrier signals using widely linear processing (WLP). In this paper, a novel equalization technique using WLP is proposed to effectively improve the system performance, and it is shown that the proposed FOFDM receiver can provide better estimate of the tra

    Performance analysis and optimization of DCT-based multicarrier system on frequency-selective fading channels

    Get PDF
    Regarded as one of the most promising transmission techniques for future wireless communications, the discrete cosine transform (DCT) based multicarrier modulation (MCM) system employs cosine basis as orthogonal functions for real-modulated symbols multiplexing, by which the minimum orthogonal frequency spacing can be reduced by half compared to discrete Fourier transform (DFT) based one. With a time-reversed pre-filter employed at the front of the receiver, interference-free one-tap equalization is achievable for the DCT-based systems. However, due to the correlated pre-filtering operation in time domain, the signal-to-noise ratio (SNR) is enhanced as a result at the output. This leads to reformulated detection criterion to compensate for such filtering effect, rendering minimum-mean-square-error (MMSE) and maximum likelihood (ML) detections applicable to the DCT-based multicarrier system. In this paper, following on the pre-filtering based DCT-MCM model that build in the literature work, we extend the overall system by considering both transceiver perfections and imperfections, where frequency offset, time offset and insufficient guard sequence are included. In the presence of those imperfection errors, the DCT-MCM systems are analysed in terms of desired signal power, inter-carrier interference (ICI) and inter-symbol interference (ISI). Thereafter, new detection algorithms based on zero forcing (ZF) iterative results are proposed to mitigate the imperfection effect. Numerical results show that the theoretical analysis match the simulation results, and the proposed iterative detection algorithms are able to improve the overall system performance significantly

    Overexpression of long non-coding RNA NORAD promotes invasion and migration in malignant melanoma via regulating the MIR-205-EGLN2 pathway.

    Get PDF
    Growing evidence suggests that long non-coding RNAs NORAD and miR-205 play a significant role in regulating cancer progression and metastasis. In this study, high expression of NORAD was firstly observed in melanoma tissues and human malignant melanoma cell lines, our aim was to study the interaction of them in the process of invasion and migration of malignant melanoma cells. NORAD, miR-205, and EGLN2 mRNA level in MM cells was detected by qRT-PCR. In situ hybridization (ISH) was performed to detect NORAD expression in MM tissues specimens. Effects of NORAD and miR-205 on Prolyl hydroxylase 2 (EGLN2) expression was explored by western blot in MM cells line. Dual-luciferase reporter assay was performed to verify the interaction relationship between NORAD and miR-205, as well as, miR-205 and EGLN2. Transwell assay was conducted to explore the effects of NORAD and miR-205 in vitro. Xenografts in nude mice experiment were used to confirm the role of NORAD and miR-205 in vivo. In vitro, NORAD knockdown significantly inhibited migration and invasion of malignant melanoma cells and elevated the expression of miR-205, there was an interaction between miR-205 and NORAD in the RNA-induced silencing complex. Upregulation of miR-205 induced significant inhibition of migratory and invasive ability compared with the scrambled control. However, downregulating NORAD largely reversed this effect. Furthermore, the regulatory effects of miR-205 on EGLN2 levels and the induction of endoplasmic reticulum stress were reversed by NORAD. In vivo, deletion of miR-205 induced tumor growth in nude mice. NORAD may play critical roles in tumorigenesis and progression of malignant melanoma by regulating of the miR-205-EGLN2 pathway, and may serve as a new therapeutic target

    Index Modulation Assisted DCT-OFDM with Enhanced Transceiver Design

    Get PDF
    An index modulation (IM) assisted Discrete Cosine Transform based Orthogonal Frequency Division Multiplexing (DCT-OFDM) with Enhanced Transmitter Design (termed as EDCT-OFDM-IM) is proposed. It amalgamates the concept of Discrete Cosine Transform assisted Orthogonal Frequency Division Multiplexing (DCT-OFDM) and Index Modulation (IM) to exploit the design freedom provided by the double number of available subcarrier under the same bandwidth. In the proposed EDCT-OFDM-IM scheme, the maximum likelihood (ML) detector used for symbol bits and index bits recovering is derived and the sophisticated designing guidelines for EDCT-OFDM-IM are provided. Based on the derived pairwise error event probability, a theoretical upper bound on the average bit-error probability (ABEP) of EDCT-OFDM-IM is provided over multipath fading channels. Furthermore, the maximum peak-to-average power ratio (PAPR) of our proposed EDCT-OFDM-IM scheme is derived and compared to than the general Discrete Fourier Transform (DFT) based OFDM-IM counterpart

    Enhanced DCT-OFDM system with index modulation

    Get PDF
    Discrete cosine transform (DCT) based orthogonal frequency division multiplexing (OFDM), which has double number of subcarrier compared to the classic discrete fourier transform (DFT) based OFDM (DFT-OFDM) at the same bandwidth, is a promising high spectral efficiency multicarrier techniques for future wireless communication. In this paper, an enhanced DCT-OFDM with index modulation (IM) (EDCT-OFDM-IM) is proposed to further exploit the benefits of the DCT-OFDM and IM techniques. To be more specific, a pre-filtering method based DCT-OFDM-IM transmitter is first designed and the non-linear maximum likelihood (ML) is developed for our EDCT-OFDM-IM system. Moreover, the average bit error probability (ABEP) of the proposed EDCT-OFDM-IM system is derived, which is confirmed by our simulation results. Both simulation and theoretical results are shown that the proposed EDCT-OFDM-IM system exhibits better bit error rate (BER) performance over the conventional DFT-OFDM-IM and DCT-OFDM-IM counterparts

    State detection of bond wires in IGBT modules using eddy current pulsed thermography

    Get PDF
    Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring

    microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma.

    Get PDF
    Glycolysis was reported to have a positive correlation with radioresistance. Our previous study found that the miR-33a functioned as a tumor suppressor in malignant melanoma by targeting hypoxia-inducible factor1-alpha (HIF-1α), a gene known to promote glycolysis. However, the role of miR-33a-5p in radiosensitivity remains to be elucidated. We found that miR-33a-5p was downregulated in melanoma tissues and cells. Cell proliferation was downregulated after overexpression of miR-33a-5p in WM451 cells, accompanied by a decreased level of glycolysis. In contrast, cell proliferation was upregulated after inhibition of miR-33a-5p in WM35 cells, accompanied by increased glycolysis. Overexpression of miR-33a-5p enhanced the sensitivity of melanoma cells to X-radiation by MTT assay, while downregulation of miR-33a-5p had the opposite effects. Finally, in vivo experiments with xenografts in nude mice confirmed that high expression of miR-33a-5p in tumor cells increased radiosensitivity via inhibiting glycolysis. In conclusions, miR-33a-5p promotes radiosensitivity by negatively regulating glycolysis in melanoma

    Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells

    Get PDF
    A novel bioactive macromolecule based on morpholino-functiona lized phosphorus dendrimers (generation 2, G2-Mor+ ) was devel oped for osteogenic differentiation of mesenchymal stem cells (MSCs). Interestingly, through in vitro tests, it was shown that G2- Mor+ dendrimer can strongly promote the transformation of MSCs into osteoblasts, which implies the potential application of phos phorus de medicine.info:eu-repo/semantics/publishedVersio
    corecore