45 research outputs found
Mass and kinetic energy distribution of the species generated bylaser ablation of La0.6Ca0.4MnO3
The mass distributions of the species generated by laser ablation from a La0.6Ca0.4MnO3 target using laser irradiation wavelengths of 193nm, 266nm and 308nm have been investigated with and without a synchronized gas pulse of N2O. The kinetic energies of the species are measured using an electrostatic deflection energy analyzer, while the mass distributions of the species were analyzed with a quadrupole mass filter. In vacuum (pressure 10−7mbar), the ablation plume consists of metal atoms and ions such as La, Ca, Mn, O, LaO, as well as multiatomic species, e.g. LaMnO+. The LaO+ diatomic species are by far the most intense diatomic species in the plume, while CaO and MnO are only detected in small amounts. The interaction of a reactive N2O gas pulse with the ablation plume leads to an increase in plume reactivity, which is desired when thin manganite films are grown, in order to incorporate the necessary amount of oxygen into the film. The N2O gas pulse appears to have a significant influence on the oxidation of the Mn species in the plume, and on the creation of negative ions, such as LaO−,O− and O 2
Nanosecond and femtosecond ablation of La0.6Ca0.4CoO3: a comparison between plume dynamics and composition of the films
Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248nm, 500fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosecond pulses (248nm, 20ns pulse duration). The origin of these pronounced differences between the films grown by ns and fs ablation has been studied in detail by time-resolved optical emission spectroscopy and imaging. The plumes generated by nanosecond and femtosecond ablation were analyzed in vacuum and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar velocities of the plume species are observed for fs and ns laser ablation. The different film compositions are therefore not related to different kinetic energies and different distributions of various species in the plasma plume which has been identified as the origin of the deficiency of species for other material
Physical routes for the synthesis of kesterite
This paper provides an overview of the physical vapor technologies used to synthesize Cu2ZnSn(S,Se)4
thin films as absorber layers for photovoltaic applications. Through the years, CZT(S,Se) thin films
have been fabricated using sequential stacking or co-sputtering of precursors as well as using
sequential or co-evaporation of elemental sources, leading to high-efficient solar cells. In addition,
pulsed laser deposition of composite targets and monograin growth by the molten salt method were
developed as alternative methods for kesterite layers deposition. This review presents the growing
increase of the kesterite-based solar cell efficiencies achieved over the recent years. A historical
description of the main issues limiting this efficiency and of the experimental pathways designed to
prevent or limit these issues is provided and discussed as well. Afinal section is dedicated to the
description of promising process steps aiming at further improvements of solar cell efficiency, such as
alkali doping and bandgap grading1. R Caballero and M León acknowledge financial support via the Spanish Ministry of Science, Innovation and Universities project (WINCOST, ENE2016-80788-C5-2-R) and thank H2020 EU Programme under the project INFINITE-CELL (H2020-MSCA-RISE-2017-777968).
2. S Canulescu and J Schou acknowledge the support from Innovation Fund Denmark.
3. D-H Kim acknowledges financial support via the DGIST R&D Program of the Ministry of Science and ICT, KOREA (18-BD-05).
4.C. Malerba acknowledges the support from the Italian Ministry of Economic development in the framework of the Operating Agreement with ENEA for the Research on the Electric System.
5.A Redinger acknowledges financial support via the FNR Attract program, Project : SUNSPOT, Nr.11244141.
6. E Saucedo thanks H2020 EU Programme under the projects STARCELL (H2020-NMBP-03-2016-720907) and INFINITE-CELL (H2020-MSCA-RISE-2017-777968), the Spanish Ministry of Science, Innovation and Universities for the IGNITE project (ENE2017-87671-C3-1-R), and the European Regional Development Funds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013). IREC belong to
the SEMS (Solar Energy Materials and Systems) Consolidated Research Group of the ‘Generalitat de Catalunya’ (Ref. 2017 SGR 862).
7. Taltech acknowledges financial support via the Estonian Ministry of Education and Research funding project IUT19-28 and the European Union Regional Development Fund, Project TK141.
8. B Vermang has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No 715027
Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens
A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime of the discharge, where the cross section for electron attachment increases. The formation of negative ions from sputtering of metals and metal oxides is compared with that for positive ions. It is shown that the negative ion signals of F(-) and TaO(2)F(-) are enhanced relative to positive ion signals and can be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible for the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed
Exploring the phonon-assisted excitation mechanism of luminescent centres in hexagonal boron nitride by photoluminescence excitation spectroscopy
The two-dimensional material hexagonal boron nitride (hBN) hosts
single-photon emitters active at room temperature. However, the microscopic
origin of these emitters, as well as the mechanism through which they are
excited, remain elusive. We address these issues by combining \emph{ab initio}
calculations with low-temperature photoluminescence excitation spectroscopy. By
studying 26 defect transitions, we find excellent qualitative agreement of
experiments with the emission and absorption line shapes of the carbon trimers
and , while enabling us to exclude 24 defect
transitions for one luminescent centre. Furthermore, we show an enhanced
zero-phonon line intensity at two-phonon detuning. This unambiguously
demonstrates that luminescent centers in hBN, and by inference single-photon
emitters, are excited through a phonon-assisted mechanism. To the best of our
knowledge, this study provides the most comprehensive insight into the
excitation mechanism and the microscopic origin of luminescent centers in hBN