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The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been inves-

tigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflec-

tivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti content. X-

ray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases

with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystal-

line to amorphous structure. The transport properties of the Al-Ti films are influenced by electron

scattering at the grain boundaries in the case of polycrystalline films and static defects, such as anti-

site effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real re-

fractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller than k

allows us to explore the parameter space for the free-electron behavior in transition metal-Al alloys.

The free electron model, applied for the polycrystalline Al-Ti films with Ti content up to 20%, leads

to an optical reflectance at near infrared wavelengths that scales linearly with the square root of the

electrical resistivity. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945769]

Much attention has been paid to the prediction and meas-

urements of optical reflectivity of metallic films due to their

use in a wide variety of applications ranging from solar reflec-

tors to reflector layers on recordable or erasable-rewritable

compact discs. Aluminum is an attractive material due to its

high reflectivity, and tailoring its electrical resistivity can be

achieved by adding metallic impurities (alloying). Alloying

with transition metals (TMs), such as Ti, has turned out to di-

minish premature fatigue issues associated with stress, as well

as enhancing the corrosion resistance and the hardness com-

pared to pure Al.1,2 Amorphous Al-Ti alloys exhibit a higher

resistance against pitting corrosion compared to the crystalline

counterpart.3 In aluminum alloys containing transition metals,

there will be an s-d electron scattering contribution to the re-

sidual resistivity4 which also depends upon atomic ordering

of the alloys. It is thus important to investigate changes in

optical reflectance of metallic alloys as a function of electrical

resistivity.

The reflectance of a material can be expressed as

R ¼ 1� 4n

nþ 1ð Þ2 þ k2
; (1)

where n, k are the real and imaginary parts of the refractive

index, respectively. In near–infrared region when nðxÞ
� kðxÞ, the reflectance can be approximated by the simple

expression:

R � 1� 4
n

k2
: (2)

Eq. (2) can be further expressed in terms of the material

constants s; l; and q; where s is the electron scattering time,

l is the magnetic permeability, and q is the specific electrical

resistivity:5

R � 1� 2c�1l�1=2s�1=2q1=2: (3)

The free electron model was previously used to correlate opti-

cal reflectance with electrical resistivity of multi-component

sputtered alloys, such as AgMgAl5,6 and Al-Ni-Y metallic

glasses.7 The aim of the paper is to investigate the role of Ti

alloying on the structural, transport, and optical properties of

the sputter-deposited Al thin films. The correlation between

the optical reflectivity and electrical resistivity of the Al-Ti

alloys will be discussed based on the Drude electron model.

The Al-Ti alloy thin films were deposited by DC magne-

tron sputtering using two high purity targets of Al (99.99%)

and Ti (99.99%). The film composition was varied by chang-

ing the relative power on the Al and Ti targets. The Ar pres-

sure during deposition was 185 mPa. The distance between

the targets and sample was about 100 mm, and the bias volt-

age on the substrate was fixed at �60 V. The substrate tem-

perature during deposition was between 70 and 100 �C. The

composition of the films was determined by Rutherford

Backscattering Spectrometry (RBS) and Energy Dispersive

X-ray Spectroscopy (EDX), and the thickness of the films

was measured by profilometry. The crystal structure was

determined by grazing incidence X-ray diffraction (GI-XRD).

The sheet resistance (Rs) was measured by a four-point probe

system, and the electrical resistivity q was subsequently calcu-

lated as Rs� d, where d is the film thickness. The total reflec-

tivity was measured with an integrating sphere system over the

wavelength range from 400 to 990 nm. A detailed description

of the setup is given elsewhere.8 The local structure around

Ti atoms was investigated by Extended X-ray Absorption

0003-6951/2016/108(14)/141909/4/$30.00 VC 2016 AIP Publishing LLC108, 141909-1
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Fine Structure (EXAFS) spectroscopy at Ti K-edge

(�4966 eV) at the microXAS beamline, Swiss Light Source,

Switzerland. The spectra were recorded at room temperature,

using an X-ray beam size of 1.0 � 0.6 mm2, delivered by the

Si(111) monochromator crystals with an energy resolution of

�0.3 eV. The samples have been measured in fluorescence

mode, with a single-element solid state detector (from

Ketek) with 180 eV energy resolution. The X-ray absorption

data were analyzed following standard procedures using the

Demeter software package.9

X-ray diffraction (XRD) patterns of representative

sputter-deposited Al-Ti thin films with Ti content ranging

from 2% to 46% are shown in Fig. 1. All films have a thick-

ness of about 110 6 20 nm. For the films with a Ti content

varying from 2% to 15%, only the Al fcc phase is observed,

with intense reflections along the (111) and (200) directions

indicating a polycrystalline structure. The solubility of Ti in

Al is about 1.3% in thermal equilibrium.10 The detection of a

single Al fcc phase suggests that Ti atoms occupy regular

positions in the Al fcc lattice. The XRD diffraction peaks

broaden with increasing Ti content suggesting a decrease of

the grain size. Indeed, the grain size estimated from the full

width at half maximum of the (111) reflection of the A1 fcc

phase is 33, 27, and 17 nm for Al-Ti film with Ti content of

2%, 5%, and 15%, respectively. The data indicate that Ti

acts as an efficient grain refiner in the Al alloys, which is in

agreement with previous findings.11,12 For the Al80Ti20 film,

the intensity of the peaks increases significantly again and

shifts to higher 2h values, while the grain size is estimated to

be around 27 nm. The shift cannot be associated with the for-

mation of the Al3Ti phase typically observed at higher 2h
values. The crystal structure is probably associated with the

formation of an ordered Al1�xTix metastable phase. Films

with Ti content of 24% and above have broad diffraction

peaks characteristic of an amorphous structure. Our data are

consistent with previous findings of thin films of sputter-

deposited Al-Ti alloys to become amorphous at large Ti con-

centrations.13 EXAFS spectroscopy at the Ti K-edge was

used to investigate the local structure around the Ti atoms.

The experimental data in Fig. 2 (shown with points) that

aligned with the model (shown with lines) involved analysis of

the first Ti-Al shell situated at 2.69 Å in the fcc crystal struc-

ture. The Fourier transformed (FT) EXAFS spectra are shown

in Figs. 2(a) and 2(b), and the derived structural parameters,

such as the coordination number (NN), distance to the nearest

neighbors (R), and Debye Waller factor r0
2 (which includes a

static disorder and thermal vibrations), are given in Table I. As

observed in Fig. 2(a), the amplitude of the FT peak corre-

sponding to the polycrystalline alloys (Al1�xTix, x up to 20%)

increases with increasing Ti content and reaches a maximum

for Al80Ti20 (Fig. 2(a)). Consequently, the Debye Waller factor

decreases suggesting an increase of the structural ordering

around Ti atoms. The lowest r0
2 value was obtained for

the Al80Ti20 film which indicates a highly ordered phase. In

contrast, the amplitude of the peak corresponding to the amor-

phous alloys (Al1�xTix, x of 25% and above) drops signifi-

cantly compared to the crystalline counterpart (Fig. 2(b)). The

r0
2 values are larger compared to the crystalline alloys, while

the NN is significantly reduced, suggesting that the disorder

around Ti atoms is significantly higher compared to the crys-

talline counterpart.14,15 Amorphous alloys have a lower coor-

dination number and smaller average inter-atomic distance

compared to the crystalline counterpart, and this trend is more

pronounced for Al46Ti64 and Al54Ti46 (see Table I). The trend

can result from an increased sp-d hybridization,16 perhaps as a
FIG. 1. Grazing incidence X-ray diffraction (GI-XRD) patterns of represen-

tative Al1� xTix (x¼ 2% to 46%) films deposited on glass.

FIG. 2. Fourier-transforms EXAFS spectra measured at the Ti K-edge for

Al1�xTix polycrystalline (a) and amorphous alloys (b). The measured data

are plotted with points, while the fits are shown with continuous line. The

dashed line represents the first shell window used for fitting.
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result of increase of the covalent bonding nature of the

alloys.17–19

The electrical resistivity of the Al-Ti films increases with

Ti content, as shown in Fig. 3. In Aluminium alloyed with

transition metals, there will also be an sp-d electron scattering

contribution to the resistivity.4,20,21 Polycrystalline Al-Ti films

of a single fcc structure (Ti content up to 15%) consist of

nanoscale grains that decrease in size with increasing Ti con-

tent. Consequently, the electrical resistivity increases as a

result of enhanced electron scattering at the grain boundaries.

For a Ti content of 20% and above, the electrical resistivity of

the films is larger than 100 lX� cm. The origin of the high

resistivity of the Al80Ti20 ordered phase needs to be further

studied. Mooij et al.22 have indicated that in materials with

high electrical resistivity (>100 lX� cm), the mean free path

of the conduction electrons is of the order of the short range

order of the materials. The large electrical resistivity values of

the amorphous films can probably be associated with scatter-

ing of conduction electrons by 3d-Ti metal ions at Al-site and

vacancies (VTi or VAl)
18 rather than microscopic defects, such

as grain boundaries.

The optical reflectance spectra of Al1�xTix alloys at visi-

ble and near infrared wavelengths are shown in Fig. 4. Upon

alloying, optical reflectance decreases gradually with

increasing Ti content, both at visible and near infrared wave-

lengths. Pure Al has a high reflectance in the visible and near

infrared spectral range and exhibits a reflectivity drop at

around 800 nm due to intraband transitions,23 as shown in the

inset in Fig. 4. Low Ti alloying (2 and 5 at. % Ti) results in a

significant weakening of the intraband transitions and shift of

the position of the peak towards higher photon energy. For Ti

content of 10 at. % and above, the reflectance spectra decrease

significantly and the absorption peak associated with the intra-

band absorption vanishes. The disappearance of the absorption

dip for Ti content above 10% indicates that the band structure

of Al is significantly affected by Ti 3d impurities. Amorphous

alloys have a relatively flat optical reflectivity profile over the

entire wavelength. We have used the free-electron model to

study the relationship between optical reflectance at near-

infrared wavelengths and transport properties of the Al-Ti

alloys according to Eq. (3). We assume that the magnetic per-

meability is constant for non-ferromagnetic materials, such as

pure Al and Ti, and does not vary significantly over the stud-

ied composition range. Aluminum alloys with dilute concen-

tration of Cr, Mn, or Fe were found to be magnetic20,24,25 but

non-magnetic in case of Ti.26 The optical reflectance depends

mainly on the electrical resistivity (q) and the electron

TABLE I. List of investigated sputter-deposited Ti, Al, and Al-Ti thin films showing the results from XRD, EXAFS, resistivity, and optical reflectance.

NN¼ number of nearest neighbors in the first coordination shell at distance R from the Ti atoms; r0
2 is the Debye-Waller factors obtained from EXAFS fitting.

Films composition Crystal structure

EXFAS

Resistivity (lX� cm) Optical reflectance at 980 nmNN Interatomic distance R (Å) r0
2 (Å�2)

Al98Ti2 Polycrystalline 3.5 2.78 6 0.014 0.010 6 0.002 32 0.85

Al95Ti5 Polycrystalline 4 2.79 6 0.01 0.008 6 0.001 66 0.82

Al90Ti10 Polycrystalline 4.5 2.80 6 0.007 0.0078 6 0.001 70 0.69

Al85Ti15 Polycrystalline 5.3 2.80 6 0.005 0.007 6 0.001 91 0.64

Al80Ti20 Polycrystalline 5.1 2.82 6 0.014 0.003 6 0.002 121 0.62

Al76Ti24 Amorphous 3.9 2.75 6 0.064 0.016 6 0.012 186 0.6

Al64Ti36 Amorphous 3.04 2.76 6 0.029 0.018 6 0.005 219 0.55

Al54Ti46 Amorphous 2.43 2.74 6 0.034 0.017 6 0.006 278 0.52

Sputter deposited Al … … … … 26 0.88

Sputter deposited Ti … … … … 150 0.39

FIG. 3. Electrical resistivity of the sputter-deposited Al, Ti, and Al-Ti films

with Ti content varying from 2% to 46%.

FIG. 4. Spectrally resolved total reflectance of poly-crystalline and amor-

phous Al-Ti alloys. Inset: optical intraband transition in sputter-deposited

Al, 2% and 5% Ti-alloyed Al films.
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scattering time (s). Optical reflectance of the Al-Ti alloys as a

function of the square root of the electrical resistivity is plot-

ted in Fig. 5. The data are also given in Table I. The wave-

length of 980 nm was chosen as it corresponds to a region

where the reflectivity reaches a nearly steady state regime. It

is worthwhile mentioning that at near infrared wavelengths, n
� k for pure Ti and n� k for pure Al.27 Obviously, there will

be a limit for which the Al-Ti alloyed system can satisfy Eq.

(3). The data in Fig. 5 include pure Al, polycrystalline, and

amorphous Al-Ti alloys. Note that pure Ti does not satisfy Eq.

(3). Polycrystalline Al-Ti alloys have a high fraction of grain

boundaries that increases with smaller grains, and thus it is

expected to have a larger electrical resistivity compared

to pure Al. Amorphous Al-Ti films have a larger offset com-

pared to their polycrystalline counterpart, while their transport

properties are governed by scattering of conduction electrons

by anti-site effects and vacancies. EXAFS data indicate

that amorphous alloys with large Ti content (Al46Ti64 and

Al54Ti46) have a more pronounced covalently bonded environ-

ment. Strong hybridization between sp-d electron states leads

to a lower free electron density.28 Consequently, the Drude

electron model was only used to describe the linear depend-

ence between the optical reflectance and the square root of

the electrical resistivity for the polycrystalline Al-Ti films

(see Fig. 5).

In summary, the optical and electrical properties of

Al-Ti alloys deposited by sputtering have been investigated.

Structural analysis indicates that the Al fcc structure is pre-

served in the alloyed films with a Ti content up to 15%, fol-

lowing by the appearance of a metastable phase at a Ti

content 20% Ti and finally transformation to an amorphous

structure. EXAFS indicates that structural disorder around

Ti atoms is consequently greatly enhanced in the amorphous

alloys, while the coordination number and inter-atomic

distance are slightly reduced as a result of enhanced cova-

lently bonding environment. The transport properties of pol-

ycrystalline films depend strongly on the microstructure of

the films (grain boundaries), while in the case of amorphous

alloys, the scattering of the conduction electrons is deter-

mined by static imperfections (anti-site effects and vacan-

cies). Optical reflectance of the polycrystalline Al-Ti films at

near infrared wavelengths scales linearly with the square

root of the electrical resistivity according to the classical

reflection theory.
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