89 research outputs found

    Automated simulation as part of a design workstation

    Get PDF
    A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed

    The suprachiasmatic nucleus of the domestic chicken, Gallus domesticus

    Get PDF
    The avian circadian system is composed of multiple inputs, oscillators and outputs. Among its oscillators is a hypothalamic structure presumed to be homologous to the primary circadian pacemaker in mammals, the suprachiasmatic nucleus (SCN). The SCN in avian species is poorly defined: two structures in the hypothalamus, the medial SCN (mSCN) and visual SCN (vSCN), have been referred to in the literature as the SCN. The present studies were designed to answer one central question: where is the avian homolog to the mammalian SCN? Uptake of 2-[14C]-deoxyglucose (2DG), an indicator of glucose metabolism, fluctuates in the mSCN and vSCN in both a daily and circadian manner. These data indicate a possible role in the circadian system for both the vSCN and the mSCN. Additionally, several visual structures display daily fluctuations of 2DG uptake, two of which exhibit circadian variations, supporting previous studies indicting circadian regulation of the visual system. Efferents and afferents of the mSCN and vSCN were identified and compared to those of rodents. While the mSCN bears a stronger resemblance to the rodent SCN in its efferent connections than the vSCN, afferents of both are comparable. The total number of mSCN and vSCN neuronal connections far exceeds that of the rodent SCN. A subset of these connections is strikingly similar to those of the rodent SCN, while others are found to connect these two nuclei to the visual system. These data further support the involvement of both the mSCN and vSCN in the circadian and visual systems. Suprachiasmatic organization was addressed using classical techniques. Though loosely similar in location to the mammalian SCN, the mSCN is cyto- and chemoarchitecturally different, while the vSCN bears more similarity to the mammalian SCN in this regard. A unique astrocytic bridge exists between the mSCN and vSCN, suggesting a role for astrocytes in the circadian system. Finally, the vSCN efferent to the medial nucleus of Edinger-Westphal was verified using a technique that may advance future studies of avian of circadian organization. The current data and the available literature were considered in the development of a working model of the avian SCN

    Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors

    Get PDF
    The quantum-confined Stark effect in intersublevel transitions present in quantum-dots-in-a-well (DWELL) detectors gives rise to a midIR spectral response that is dependent upon the detector\u27s operational bias. The spectral responses resulting from different biases exhibit spectral shifts, albeit with significant spectral overlap. A postprocessing algorithm was developed by Sakoglu that exploited this bias-dependent spectral diversity to predict the continuous and arbitrary tunability of the DWELL detector within certain limits. This paper focuses on the experimental demonstration of the DWELL-based spectral tuning algorithm. It is shown experimentally that it is possible to reconstruct the spectral content of a target electronically without using any dispersive optical elements for tuning, thereby demonstrating a DWELL-based algorithmic spectrometer. The effects of dark current, detector temperature, and bias selection on the tuning capability are also investigated experimentally

    Promoting positive youth development in schools: A program logic analysis of Peer Support Australia

    Full text link
    Peer Support Australia (PSA) is an established Australian charity that offers peer support services to schools to assist young people to experience personal and social growth through mentoring and supporting their peers. PSA also offers school and parent consultancy and training services that supplement their peer support services. This report documents the PSA history, activities and psychosocial processes and summarises the evidence for the service benefits. The PSA programs are noted to have some of the strongest evaluation evidence of any peer support program internationally. This report makes recommendations for implementation research to further understand and apply the underpinning evidence to extend the benefits provided through PSA

    Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration

    Get PDF
    everal lines of evidence suggest that homing of tumor cells to lymphoid tissue contributes to disease progression in chronic lymphocytic leukemia (CLL). Here, we demonstrate that lymph node (LN)-derived CLL cells possess a distinct phenotype, and exhibit enhanced capacity for T-cell activation and superior immune synapse formation when compared with paired peripheral blood (PB) samples. LN-derived CLL cells manifest a proliferative, CXCR4(dim)CD5(bright) phenotype compared with those in the PB and higher expression of T-cell activation molecules including CD80, CD86, and HLA-D-related (DR). In addition, LN-CLL cells have higher expression of α4β1 (CD49d) which, as well as being a co-stimulatory molecule, is required for CLL cells to undergo transendothelial migration (TEM) and enter the proliferation centers of the LNs. Using an in vitro system that models circulation and TEM, we showed that the small population of CLL cells that migrate are CXCR4(dim)CD5(bright) with higher CD49d, CD80, CD86, and HLA-DR compared with those that remain circulating; a phenotype strikingly similar to LN-derived CLL cells. Furthermore, sorted CD49d(hi) CLL cells showed an enhanced capacity to activate T cells compared with CD49d(lo) subpopulations from the same patient. Thus, although PB-CLL cells have a reduced capacity to form immune synapses and activate CD4(+) T cells, this was not the case for LN-CLL cells or those with the propensity to undergo TEM. Taken together, our study suggests that CLL cell immunologic function is not only modulated by microenvironmental interactions but is also a feature of a subpopulation of PB-CLL cells that are primed for lymphoid tissue homing and interaction with T cells

    Blood pressure self-monitoring in pregnancy: examining feasibility in a prospective cohort study

    Get PDF
    Background: Raised blood pressure (BP) affects approximately 10% of pregnancies worldwide, and a high proportion of affected women develop pre-eclampsia. This study aimed to evaluate the feasibility of self-monitoring of BP in pregnancy in women at higher risk of pre-eclampsia. Methods: This prospective cohort study of self-monitoring BP in pregnancy was carried out in two hospital trusts in Birmingham and Oxford and thirteen primary care practices in Oxfordshire. Eligible women were those defined by the UK National Institute for Health and Care Excellence (NICE) guidelines as at higher risk of pre-eclampsia. A total of 201 participants were recruited between 12 and 16 weeks of pregnancy and were asked to take two BP readings twice daily three times a week through their pregnancy. Primary outcomes were recruitment, retention and persistence of self-monitoring. Study recruitment and retention were analysed with descriptive statistics. Survival analysis was used to evaluate the persistence of self-monitoring and the performance of self-monitoring in the early detection of gestational hypertension, compared to clinic BP monitoring. Secondary outcomes were the mean clinic and self-monitored BP readings and the performance of self-monitoring in the detection of gestational hypertension and pre-eclampsia compared to clinic BP. Results: Of 201 women recruited, 161 (80%) remained in the study at 36 weeks or to the end of their pregnancy, 162 (81%) provided any home readings suitable for analysis, 148 (74%) continued to self-monitor at 20 weeks and 107 (66%) at 36 weeks. Self-monitored readings were similar in value to contemporaneous matched clinic readings for both systolic and diastolic BP. Of the 23 who developed gestational hypertension or pre-eclampsia and self-monitored, 9(39%) had a raised home BP prior to a raised clinic BP. Conclusions: Self-monitoring of BP in pregnancy is feasible and has potential to be useful in the early detection of gestational hypertensive disorders but maintaining self-monitoring throughout pregnancy requires support and probably enhanced training

    The unknown and the unexplored: insights Into the Pacific deep-sea following NOAA CAPSTONE expeditions

    Get PDF
    Over a 3-year period, the National Oceanic and Atmospheric Administration (NOAA) organized and implemented a Pacific-wide field campaign entitled CAPSTONE: Campaign to Address Pacific monument Science, Technology, and Ocean NEeds. Under the auspices of CAPSTONE, NOAA mapped 597,230 km2 of the Pacific seafloor (with ∼61% of mapped area located within US waters), including 323 seamounts, conducted 187 ROV dives totaling 891.5 h of ROV benthic imaging time, and documented >347,000 individual organisms. This comprehensive effort yielded dramatic insight into differences in biodiversity across depths, regions, and features, at multiple taxonomic scales. For all deep sea taxonomic groups large enough to be visualized with the ROV, we found that fewer than 20% of the species were able to be identified. The most abundant and highest diversity taxa across the dataset were from three phyla (Cnidaria, Porifera, and Echinodermata). We further examined these phyla for taxonomic assemblage patterns by depth, geographic region, and geologic feature. Within each taxa, there were multiple genera with specific distribution and abundance by depth, region, and feature. Additionally, we observed multiple genera with broad abundance and distribution, which may focus future ecological research efforts. Novel taxa, records, and behaviors were observed, suggestive of many new types of species interactions, drivers of community composition, and overall diversity patterns. To date, only 13.8% of the Pacific has been mapped using modern methods. Despite the incredible amount of new known and unknown information about the Pacific deep-sea, CAPSTONE is far from the culminating experience the name suggests. Rather, it marks the beginning of a new era for exploration that will offer extensive opportunities via mapping, technology, analysis, and insights.Published versio
    corecore