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ABSTRACT 
 

The Suprachiasmatic Nucleus of the Domestic Chicken, 

Gallus domesticus. (December 2005) 

Elizabeth Layne Cantwell, B.A., University of Virginia 

Chair of Advisory Committee: Dr. Vincent M. Cassone 
 

 The avian circadian system is composed of multiple inputs, oscillators and 

outputs.  Among its oscillators is a hypothalamic structure presumed to be homologous 

to the primary circadian pacemaker in mammals, the suprachiasmatic nucleus (SCN).  

The SCN in avian species is poorly defined: two structures in the hypothalamus, the 

medial SCN (mSCN) and visual SCN (vSCN), have been referred to in the literature as 

the SCN.  The present studies were designed to answer one central question:  where is 

the avian homolog to the mammalian SCN?  Uptake of 2-[14C]-deoxyglucose (2DG), an 

indicator of glucose metabolism, fluctuates in the mSCN and vSCN in both a daily and 

circadian manner.  These data indicate a possible role in the circadian system for both 

the vSCN and the mSCN.  Additionally, several visual structures display daily 

fluctuations of 2DG uptake, two of which exhibit circadian variations, supporting 

previous studies indicting circadian regulation of the visual system.  Efferents and 

afferents of the mSCN and vSCN were identified and compared to those of rodents.  

While the mSCN bears a stronger resemblance to the rodent SCN in its efferent 

connections than the vSCN, afferents of both are comparable.  The total number of 

mSCN and vSCN neuronal connections far exceeds that of the rodent SCN.  A subset of 
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these connections is strikingly similar to those of the rodent SCN, while others are found 

to connect these two nuclei to the visual system.  These data further support the 

involvement of both the mSCN and vSCN in the circadian and visual systems.  

Suprachiasmatic organization was addressed using classical techniques.  Though loosely 

similar in location to the mammalian SCN, the mSCN is cyto- and chemoarchitecturally 

different, while the vSCN bears more similarity to the mammalian SCN in this regard.  

A unique astrocytic bridge exists between the mSCN and vSCN, suggesting a role for 

astrocytes in the circadian system.  Finally, the vSCN efferent to the medial nucleus of 

Edinger-Westphal was verified using a technique that may advance future studies of 

avian of circadian organization.  The current data and the available literature were 

considered in the development of a working model of the avian SCN. 



v 

ACKNOWLEDGMENTS 
 

I would first like to thank my advisor, Vinnie “Soul Crusher” Cassone, for 

sticking with me throughout my graduate career and for having “Git ’r done” at the top 

of the list.  You helped me see the forest, encouraged me to think more critically, and 

motivated me when I needed it.  I feel more prepared to move forward in my career than 

I ever thought possible, due in large part to your efforts.  Knowing that I’ve made you 

proud means more to me than I think you’ll ever know.  

I would also like to thank my committee members, Dave Earnest and Susan 

Golden, and Mark Zoran, who were always great sources of wisdom and encouragement.  

I must also thank Dave, for his gift of Cholera toxin in the eleventh hour, and Mark, for 

helping me with iontophoretic injections and for dreaming with me about some 

experiments I hope to accomplish in the future.  Thanks also to Tom Champney, a 

founding member of my committee, for his advice and support early in my graduate 

career. 

I have been lucky to have many supportive friends and labmates throughout my 

graduate career.  I’d especially like to thank Arjun Natesan, Michael Gonzales, Jayna 

Ditty, Jen McGoogan and Kathryn Craven for their many pep talks.  Heather Fugger was 

a great source of support throughout the writing process—sharing an office with you 

kept me sane.  Jiffin Paulose helped me polish my defense and listened to it more times 

than any good person should have to.  Paul Bartell really came through for me at crunch 

time and helped me strengthen my writing. The members of the Manson lab, my second 

home, have been a constant source of comic relief, particularly Arjan Bormans, who 



vi 

took me to the emergency room occasionally.  I’d like to thank Jen Peters, my lunch 

buddy, for our many deep conversations and commiserations.  I’d like to thank Jen and 

Kevin Leiner for their friendship and for dancing with me to “You are my sunshine”.  

Finally, I’d like to thank Shelby, Bobber, Gretchen and Roscoe for their healing powers. 

I’d like to thank my husband, Brian Cantwell, for his love and support.  You’ve 

done more than your fair share for quite some time now, while keeping me going.  There 

are truly no words that adequately describe how much you’ve helped me or how much 

you mean to me. 

Finally, I’d like to thank my mother.  You always encouraged me in my 

aspirations and prodded me along when I was feeling like I might not be able to achieve 

them.  You wouldn’t let me beat myself up when I was feeling low.  I’d have never 

gotten through this without your love, guidance and support, which have been constant 

throughout my entire life.  You’re my given, and I love you very much. 



vii 

TABLE OF CONTENTS 
 
 

Page 
 

ABSTRACT ................................................................................................................ iii 
 
ACKNOWLEDGMENTS........................................................................................... v 
 
TABLE OF CONTENTS ............................................................................................ vii 
 
LIST OF FIGURES..................................................................................................... ix 
 
LIST OF TABLES ...................................................................................................... xi 
 
NOMENCLATURE.................................................................................................... xii 
 
CHAPTER 
 
 I INTRODUCTION............................................................................... 1 
 
   Formal Properties of Circadian Rhythms...................................... 1 
   The Vertebrate Circadian System ................................................. 3 
   The Avian Circadian System......................................................... 4 
   The Putative Avian Suprachiasmatic Nucleus .............................. 9 
   Visual System Pathways ............................................................... 12 
   Objectives and Significance .......................................................... 13 
 
 II DAILY AND CIRCADIAN FLUCTUATION IN 2-DEOXY[14C]-

GLUCOSE UPTAKE IN CIRCADIAN AND VISUAL SYSTEM 
STRUCTURES OF THE CHICK BRAIN:  EFFECTS OF 
EXOGENOUS MELATONIN ........................................................... 16 

 
   Introduction ................................................................................... 16 
   Materials and Methods .................................................................. 19 
   Results ........................................................................................... 24 
   Discussion ..................................................................................... 31 
 



viii 

CHAPTER   Page 
 
 III THE CHICKEN SUPRACHIASMATIC NUCLEI: EFFERENT 

AND AFFERENT CONNECTIONS.................................................. 37 
 
   Introduction ................................................................................... 37 
   Materials and Methods .................................................................. 41 
   Results ........................................................................................... 49 
   Discussion ..................................................................................... 82 
 
 IV THE CHICKEN SUPRACHIASMATIC NUCLEI: 

AUTORADIOGRAPHIC AND IMMUNOHISTOCHEMICAL 
ANALYSIS ......................................................................................... 98 

 
   Introduction ................................................................................... 98 
   Materials and Methods .................................................................. 101 
   Results ........................................................................................... 104 
   Discussion ..................................................................................... 113 
 
 V DATA INDICATE THAT INTRAVITREAL INJECTION OF 

PSEUDORABIES VIRUS BARTHA RETROGRADELY INFECTS 
THE SUPRACHIASMATIC COMPLEX OF THE CHICK.............. 124 

 
   Introduction ................................................................................... 124 
   Materials and Methods .................................................................. 126 
   Results ........................................................................................... 129 
   Discussion ..................................................................................... 136 
 
 VI CONCLUSIONS................................................................................. 140 
 
LITERATURE CITED ............................................................................................... 157 
 
VITA ........................................................................................................................... 176 



ix 

 LIST OF FIGURES 
 
 

FIGURE  Page 
 
 1 Representative sections used to analyze 2DG uptake over time of day.....  22 
 
 2 Representative sections used to analyze effects of exogenous  
  melatonin on 2DG uptake ..........................................................................  23  
 
 3 2DG uptake over time of day in circadian structures.................................  25 
 
 4 2DG uptake over time of day in tectofugal structures................................  26 
 
 5 2DG uptake over time of day in thalamofugal structures ..........................  27 
 
 6 2DG uptake over time of day in accessory optic structures .......................  27 
 
 7 2DG uptake over time of day in other structures of interest ......................  28 
 
 8 Effects of exogenous melatonin on 2DG uptake........................................  30 
 
 9 Photomicrographs documenting all biotin dextran amine (BDA) and  
  cholera toxin B subunit (CTB) iontophoretic injections reported in  
  Tables 4 and 5 ............................................................................................  47 
 
 10 Maps of retinal input throughout its rostrocaudal extent following  
  CTB injection to the vitreous chamber of the eye......................................  50 
 
 11 Representative photomicrographs of retinal input to the brain  
  following CTB injection to the vitreous chamber of the eye .....................  52 
 
 12 Maps of mSCN efferents and afferents throughout the rostrocaudal  
  extent of the brain following BDA and CTB iontophoretic injections,  
  respectively.................................................................................................  59 
 
 13 Representative photomicrographs of mSCN afferents and efferents .........  66 
 
 14 Maps of vSCN efferents and afferents throughout the rostrocaudal  
  extent of the brain following BDA and CTB iontophoretic injections,  
  respectively.................................................................................................  67 
 
 15 Representative photomicrographs of vSCN afferents and efferents ..........  74 
 



x 

FIGURE  Page 
 
 16 Retinal ganglion cell label following CTB injection to the vSCN.............  81 
 
 17 These schematic diagrams in the sagittal plane summarize what is  
  known about the efferent and afferent connections of the chick and  
  rodents ........................................................................................................  84 
 
 18 A working model of the avian SCN ...........................................................  95 
 
 19 Representative photomicrographs of retinal input to the brain  
  following injection of tritiated proline to the eye.......................................  106 
 
 20 Schematic illustration of retinal terminals and antigen distribution at  
  three levels of the hypothalamus ................................................................  108 
 
 21 Representative photomicrographs of immunohistochemical staining  
  in the mSCN and vSCN. ............................................................................  110 
 
 22 The astrocytic bridge as demonstrated by immunohistochemical  
  analysis with GFAP....................................................................................  112 
 
 23 An updated working model of the avian SCN ...........................................  120 
 
 24 PRV infection of structures 48 and 64 hours post-injection ......................  132 
 
 25 PRV infection of structures 72 hours post-infection..................................  134 
 
 26 PRV infection of structures 80 and 88 hours post-injection ......................  135 
 
 27 A current working model of the avian SCN...............................................  148 
 
 
 
 
 
 



xi 

LIST OF TABLES 
 
 

TABLE  Page 
 
 1 Analysis of 2DG uptake from Experiment 1..............................................  28 
 
 2 Analysis of 2DG uptake from Experiment 2..............................................  31  
 
 3 Previously reported retinorecipient avian brain structures.........................  53 
 
 4 Efferent connections of the avian and mammalian suprachiasmatic 
  nuclei ..........................................................................................................  55 
 
 5 Afferent connections of the avian and mammalian suprachiasmatic 
  nuclei ..........................................................................................................  56 
 
 6 Antigen distribution of the suprachiasmatic nuclei of the chick,  
  sparrow and rat ...........................................................................................  111 
 
 7 Structures infected after intravitreal PRV Bartha injection........................  130 
 
 
 
 



xii 

NOMENCLATURE 
 

 
3V third ventricle 

 
5HT serotonin 

 
AA anterior archopallium 

 
AL ansa lenticularis 

 
AM hypothalamic anterior nucleus 

 
AO accessory optic pathway 

 
AP pretectal area 

 
APH parahippocampal area 

 
Aq cerebral aqueduct 

 
AVP arginine vasopressin (avian homolog, arginine vasotocin) 

 
AVT ventral tegmental area 

 
Cb cerebellum 

 
CH corticohabenular tract 

 
CHCS corticohabenular and corticoseptal tract 

 
CO optic chiasm 

 
CP posterior commissure 

 
CT tectal commissure 

 
DIP posterior dorsointermediate nucleus 

 
DLAl lateral anterior dorsolateral nucleus 

 
DLAlr rostrolateral dorsolateral nucleus  

 
DLAm medial anterior dorsolateral nucleus 



xiii 

DLAmc magnocellular anterior dorsolateral nucleus 
 

DLP posterior dorsolateral nucleus 
 

DMA anterior thalamic dorsomedial nucleus 
 

DMN hypothalamic dorsomedial nucleus 
 

DMP posterior thalamic dorsomedial nucleus 
 

DSD dorsal supraoptic decussation 
 

DSV ventral supraoptic decussation 
 

E entopallium 
 

EPR encephalic photoreceptors 
 

EW nucleus of Edinger-Westphal 
 

GABA γ-aminobutyric acid 
 

GAD glutamic acid decarboxylase 
 

GCt midbrain central gray 
 

GFA glial fibrillary acidic protein 
 

GHT geniculohypothalamic tract 
 

GLd dorsolateral geniculate nucleus 
 

GLv ventrolateral geniculate nucleus 
 

GnRH gonadotropin releasing hormone 
 

GRP gastrin releasing peptide 
 

GT tectal gray 
 

ICT intercalated nucleus 
 

IH hypothalamic inferior nucleus 
 



xiv 

IN infundibular nucleus 
 

ICo intercollicular nucleus 
 

IO isthmo-optic nucleus 
 

HA hyperpallium, apical part 
 

Hb habenula 
 

HL lateral habenular nucleus 
 

HM medial habenular nucleus 
 

Hp hippocampus 
 

HTh hypothalamus 
 

LA lateral anterior nucleus 
 

LHy lateral hypothalamic area 
 

LMmc mesencephalic lentiform nucleus, magnocellular part 
 

LMpc mesencephalic lentiform nucleus, parvocellular part 
 

LoC locus coeruleus 
 

LSO lateral septal organ 
 

ME median eminence 
 

ML lateral mamillary nucleus 
 

MLd dorsolateral mesencephalic nucleus 
 

MM medial mamillary nucleus 
 

MPO magnocellular preoptic nucleus 
 

mSCN medial suprachiasmatic nucleus 
 

nBor nucleus of the basal optic root 
 



xv 

nBST bed nucleus of the stria terminalis 
 

nBSTL lateral nBST 
 

nBSTM medial nBST 
 

nCPa bed nucleus of the pallial commissure 
 

NE norepinephrine 
 

NPY neuropeptide Y 
 

nRot nucleus rotundus 
 

nTSM nucleus of the septo-mesencephalic tract 
 

OM occipito-mesencephalic tract 
 

OT oxytocin (avian homolog, mesotocin) 
 

OV nucleus ovoidalis 
 

Pap papillioform nucleus 
 

Pin pineal gland 
 

PMI internal paramedian nucleus 
 

POA preoptic area 
 

POD dorsolateral preoptic nucleus 
 

POM medial preoptic nucleus 
 

POP preoptic periventricular nucleus 
 

PPC principal precommissural nucleus 
 

PPT pedunculopontine tegmental nucleus 
 

pRot perirotundal area 
 

PST pretecto-subpretectal tract 
 



xvi 

PT pretectal nucleus 
 

PVN hypothalamic paraventricular nucleus 
 

PVO paraventricular organ 
 

PVT thalamic paraventricular nucleus 
 

RHT retinohypothalamic tract 
 

Ru red nucleus 
 

SAC central album layer of optic tectum 
 

SCE external cellular layer 
 

SCN suprachiasmatic nucleus 
 

SCv ventral nucleus subcoeruleus 
 

SGC central gray layer of optic tectum 
 

SGFS superficial gray and fiber layer of optic tectum 
 

SGP periventricular gray layer of optic tectum 
 

SHL lateral subhabenular nucleus 
 

SHM medial subhabenular nucleus 
 

SL lateral septal nucleus 
 

SM medial septal nucleus 
 

SMe stria medularis 
 

SO optic layer of optic tectum 
 

SOv ventral supraoptic nucleus 
 

SP subpretectal nucleus 
 

SS somatostatin 
 



xvii 

SSO subseptal organ 
 

SubP substance P 
 

T nucleus triangularis 
 

TeF tectofugal visual pathway 
 

Teg tegmentum 
 

TeO optic tectum 
 

TH tyrosine hydroxylase 
 

THth tuberal hypothalamus 
 

ThF thalamofugal visual pathway 
 

TIO isthmo-optic tract 
 

Tn nucleus taeniae 
 

TnBor tract of the nucleus of the basal optic root 
 

TrO optic tract 
 

TSM septo-mesencephalic tract 
 

VIP vasoactive intestinal polypeptide 
 

VLPO ventrolateral preoptic nucleus 
 

VLT thalamic ventrolateral nucleus 
 

VMN ventromedial nucleus 
 

vSCN visual suprachiasmatic nucleus 
 

VT tectal ventricle 
 

 



1 

CHAPTER I 

INTRODUCTION 

 

FORMAL PROPERTIES OF CIRCADIAN RHYTHMS 

 Adaptation is necessary for all organisms to survive in their environmental 

conditions.  Not only must an organism adapt to a climate, but also to the daily changes 

that occur as a result of Earth’s rotation around the Sun, the Moon’s rotation around the 

Earth and the Earth’s rotation on its axis.  This dynamic system creates changes in 

magnetic field and temperature and produces lunar and solar cycles.  Thus, an organism 

is best adapted to its environment if it is able to anticipate the changes that take place 

over a day, a month, a season and a year.  The biological clock evolved as a timing 

mechanism found in nearly every species studied, from single-celled prokaryotes to 

humans.  The biological clock is a complex mechanism that allows organisms to predict 

events of varying cycle length, from annual to ultradian.  The length of time that it takes 

to complete one cycle of a rhythm is called the period.  Of specific interest in this 

document is the circadian system, so named because a circadian rhythm has a period of 

about 24 hours (Pittendrigh, 1960).   

 In order to be considered circadian, a rhythm must fulfill three requirements.  

First, a circadian rhythm must be endogenous, which means it must persist in constant 

conditions, devoid of timing cues, and the periodicity of the rhythm must be stable and 

approximately 24 hours.  The most common constant conditions paradigm is constant 
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 darkness (DD; Pittendrigh, 1960).  The endogenous period is specific to both the species 

and individual organism being studied and is known as the free running period 

(Menaker, 1982).   

Second, the rhythm must be entrainable:  the clock must be able to coordinate its 

activity with external time cues, called Zeitgebers.  The most prominent Zeitgeber 

among vertebrate species is light, which is typically present in a cyclical manner due to 

the rotation of the Earth on its axis (Menaker and Tosini, 1995)  When an organism lives 

in a cyclical paradigm, hours are measured in Zeitgeber time (ZT).  For example, if an 

organism is kept in a light:dark (LD) cycle in which the lights are on for 12 hours and 

off for 12 hours (LD 12:12), ZT0 is dawn and ZT12 is dusk.   In constant conditions, an 

organism begins to free run and the hours are now measured in circadian time (CT), in 

which subjective dawn is CT0 and subjective dusk is CT12.  Circadian time is assessed 

by observing the temporal distribution of an organism’s behavior.  Any light paradigm 

involving light and dark is called a T cycle.  Animals are able to entrain to T cycles in 

which the period differs from 24 hours; however, each species is limited in the T cycle 

periodicities to which it may entrain by upper and lower limits (Aschoff, 1981).   

Third, a circadian rhythm must be temperature compensated.  Most biochemical 

reactions are directly affected by changes in temperature and have a Q10 of 2 to 3.  This 

means that for every ten-degree change in temperature, the reaction speed changes 

proportionally 2- to 3-fold.  The circadian clock has a Q10 of 0.9 to 1.2, meaning that, 

although temperature is a zeitgeber in many organisms, the period of the clock stays 

relatively stable (Pittendrigh, 1960).  
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THE VERTEBRATE CIRCADIAN SYSTEM 

 The vertebrate circadian system is composed of multiple inputs, oscillators and 

outputs.  Input pathways collect timing cues in the form of zeitgebers.  This information 

is conveyed to the oscillators, which then drive rhythms through output pathways.  The 

three major structures involved in the vertebrate circadian system are the retinae, the 

pineal gland and the suprachiasmatic nucleus (SCN) of the hypothalamus.  Despite these 

common structures, circadian organization displays different levels of complexity 

between and within taxa (Menaker and Tosini, 1995). 

 Mammals, and rodents in particular, have the most studied vertebrate circadian 

system.  In the rodent system, the retinae, which contain photoreceptors, collect light 

information as part of the primary input pathway.  Enucleation results in animals that 

free run, even in an LD cycle (Korf et al., 2003).  The pineal gland produces the 

indoleamine hormone melatonin, and its synthesis is an output that is driven by the clock 

(Cassone and Natesan, 1997).  Pinealectomy has limited effects on rhythmicity:  the 

locomotor activity rhythms of pinealectomized rats are disrupted in constant light 

conditions.  These rhythms are gradually restored when the animals are placed into 

constant darkness, indicating that pineal melatonin may modulate the affects of light on 

the rat SCN (Cassone, 1992).  The SCN itself, a pair of cell groupings apposed to the 

third ventricle and just dorsal to the optic chiasm in the anterior hypothalamus, is the 

primary pacemaker of the circadian system in mammals (Moore, 1979). Early in the 

literature, the SCN was divided into ventrolateral and dorsomedial regions (Moore, 

1979) based on studies in rodents.  The ventrolateral region is now designated the 
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“core”, while the dorsomedial region is called the “shell” and these subdivisions are 

defined by retinal input and chemoarchitecture (cf. Moore et al., 2002).  Lesion of the 

SCN produces arrhythmic locomotor behavior in every mammal studied (Klein and 

Moore, 1979; Moore and Eichler, 1972; Moore and Klein, 1974; Stephan and Zucker, 

1972).  Transplant of SCN tissue into the third ventricle restores behavioral rhythmicity 

(Lehman et al., 1987).  When SCN transplants are harvested from hamsters with a 

genetic mutation that alters their free running period, the rhythms restored by the 

transplant have the period of the donor animal, and not the host (Ralph et al., 1990), 

suggesting that circadian rhythms are autonomously generated in the cells of the SCN.     

 

THE AVIAN CIRCADIAN SYSTEM 

 The avian circadian system is more complex than the mammalian circadian 

system due to the presence of multiple oscillators.  The current model describing the 

interaction of these oscillators states that there are multiple components in the avian 

circadian system (Cassone and Menaker, 1984).  These components contain multiple 

oscillators that have variable, endogenously generated oscillations and are mutually 

coupled such that their oscillations are synchronized.  If these pacemakers become 

uncoupled, disrupting their interaction, their rhythmicity becomes uncoordinated and 

eventually damps out.  This model has been referred to as the internal resonance model 

(Gwinner, 1989) and the neuroendocrine loop model, which identifies the three 

components to this system: the pineal gland, the retinae and the SCN (Cassone and 

Menaker, 1984).  
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 The pineal gland was the first avian oscillator discovered and, as in mammals, 

produces melatonin rhythmically.  Further, the pineal gland contains photoreceptors, 

allowing it to respond to light in the absence of other circadian components until its 

rhythms damp out.  Melatonin and the enzymes involved in its biosynthesis are the most 

useful outputs available to analyze the pacemaker activity of the pineal gland (Deguchi, 

1979; Kasal et al., 1979).  Pineal N-acetyl-transferase (NAT), the rate-limiting enzyme 

of melatonin biosynthesis, is expressed rhythmically in vivo in the house sparrow, 

Passer domesticus, and the chicken, Gallus domesticus  (Takahashi and Menaker, 1979).  

Further, NAT activity is rhythmic in in vitro preparations of the pineal gland (Binkley et 

al., 1978).  Cultured pineals from multiple avian species rhythmically produce melatonin 

in DD (cf. Natesan et al., 2002) and chick pineals in organ culture entrain to light cycles 

and phase shift in response to light pulses (Zatz et al., 1988).  Dispersed pineal cultures 

are temperature compensated and entrain to temperature cycles (Barrett and Takahashi, 

1995).  Further, orthologs of mammalian clock genes have been identified in the avian 

pineal gland.  In Japanese quail, Coturnix coturnix, mRNA of the period genes per2 and 

per3 is rhythmically expressed, while that of clock is constitutively available 

(Yoshimura et al., 2000).  In the chick pineal, microarray study showed rhythmic 

expression of many gene transcripts, including those from the genes involved in 

melatonin biosynthesis and clock genes.  Among the rhythmically expressed clock genes 

identified was clock, which is different from the situation in quail (Bailey et al., 2003, 

2004).   
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 As a component of the circadian system, the pineal gland oscillator has varying 

importance in different avian species.  In house sparrows, pinealectomy abolishes 

locomotor activity (Ebihara and Kawamura, 1981; Gaston, 1971; Gaston and Menaker, 

1968) and body temperature rhythms (Binkley et al., 1971), which damp gradually to 

arrhythmicity.  Pineal transplant into the anterior chamber of the eye restores this 

rhythmicity (Zimmerman and Menaker, 1979).  Exogenous melatonin rhythmically 

administered in drinking water also restores rhythmicity to pinealectomized sparrows 

(Lu and Cassone, 1993b).  In European starlings, Sturnus vulgarus, however, the pineal 

gland is not as important, as pinealectomy results in disrupted, but rhythmic, perch-

hopping activity in DD.  In some birds, that rhythm is recovered after a transient episode 

of arrhythmicity (Gwinner, 1978).  Further, this rhythm may be entrained by periodic 

injections of exogenous melatonin (Gwinner and Benzinger, 1978).  In pigeons, 

pinealectomy also has little effect on locomotor activity rhythms in LD or constant light 

(LL), although it leads to decreased stability of this rhythm (Ebihara et al., 1984; Chabot 

and Menaker, 1992b).  PINX also has no effect on feeding activity rhythms in pigeons 

(Chabot and Menaker, 1992b).  Both locomotor activity and feeding activity rhythms 

may be entrained by rhythmically infused melatonin (Chabot and Menaker, 1992a).  

Pinealectomy has no effect on locomotor activity rhythms in either the Japanese quail 

(Underwood and Siopes, 1984) or the chicken (Nyce and Binkley, 1977).  These studies 

not only reveal the varied importance of the pineal gland in avian circadian organization, 

but they indicate the presence of at least one more oscillator.  The damping of sparrow 

rhythms to arrhythmicity after pinealectomy suggests that other circadian oscillators 
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have been decoupled and cannot maintain a synchronous rhythm.  Were the pineal gland 

the only oscillator, rhythms would cease abruptly upon its removal.  In species where 

pinealectomy had little or no effect, the remaining components of the circadian system 

remain tightly coupled and are capable of producing rhythms.  Overall, these data 

indicate the existence of at least one more oscillator, thereby supporting the 

neuroendocrine loop model. 

 It was because of conclusions such as these that the oscillator in the avian retina 

was discovered.  Like the pineal gland, the retina oscillator rhythmically drives the 

synthesis of melatonin in the chick (Binkley et al., 1979; Hamm and Menaker, 1980; 

Pang et al., 1983; Reppert and Sagar, 1983; Skene et al., 1991), Japanese quail (Pang et 

al., 1983; Skene et al., 1991; Underwood and Siopes, 1984) and the pigeon (Adachi et 

al., 1995; Pang et al., 1983).  In the Japanese quail, exposure of each eye to a different 

light cycle, 180 degrees out of phase, results in ocular melatonin rhythms that are 180 

degrees out of phase with each other (Steele et al., 2003), suggesting that each retina 

oscillates autonomously.  Also in the quail retina, per2 and per3 mRNAs are 

rhythmically expressed, while clock is constitutively high (Yoshimura et al., 2000), as 

was found in the pineal gland.  In the chick, the putative photoreceptive pigment 

mRNAs for RGR opsin and peropsin are rhythmically expressed, as is clock, again 

differing from data obtained in quail (Bailey and Cassone, 2004).  Enucleation of house 

sparrows (Menaker, 1968) and most pigeons (Ebihara et al., 1984) fails to abolish either 

daily or circadian rhythms of locomotor activity, indicating that oscillators in the retinae 

do not affect overt circadian rhythmicity in those species.  Conversely, enucleation 
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results in a damping to arrhythmicity of activity rhythms in the Japanese quail 

(Underwood and Siopes, 1984), suggesting a more substantial role for the retinae in this 

species.   

Performed separately, pinealectomy and enucleation have little effect on pigeon 

locomotor activity rhythms.  However, when PINX and EX are performed as a paired 

surgery, both locomotor activity and body temperature rhythms damp gradually to 

arrhythmicity after transfer from LD to constant conditions (Ebihara et al., 1984).  The 

gradual damping that takes place after prolonged housing in constant conditions 

indicates the presence of a third oscillator.  It has long been hypothesized that this third 

oscillator is located in the hypothalamus and is homologous to the mammalian SCN.  

Supporting this hypothesis, anterior hypothalamic lesions result in loss of locomotor 

activity rhythms in house sparrows (Takahashi and Menaker., 1982), Japanese quail 

(Simpson and Follett, 1981) and Java Sparrows, Padda oryzivora (Ebihara and 

Kawamura, 1981).  The reported lesions comprised a large portion of the anterior 

hypothalamus, and two nuclei within the lesioned area have been identified in the 

literature as the avian homolog to the mammalian SCN.  The first putative homolog to 

the mammalian SCN has been labeled the periventricular preoptic nucleus (PPN; van 

Tienhoven and Jühász, 1962; Cassone and Moore, 1987; revised nomenclature, POP; 

Kuenzel and Masson, 1988), the SCN (Hartwig, 1974, Kuenzel and van Tienhoven, 

1982; Brandstatter et al., 2001), the medial hypothalamic nucleus (MHN; Norgren and 

Silver, 1989), the medial hypothalamic retinorecipient nucleus (MHRN; Shimizu et al., 

1994) and the medial SCN (mSCN; Kuenzel and Masson, 1988; Yoshimura et al., 2001).  
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It will henceforth be referred to as the mSCN.  The other putative homolog has been 

referred to in the literature as the SCN (Gamlin et al, 1982; Cooper et al., 1983), the 

lateral hypothalamic retinorecipient nucleus (LHRN) (Norgren and Silver, 1989; 

Shimizu et al., 1994) and the visual SCN (vSCN) (Cassone and Moore, 1987).  The term 

vSCN will be used hereafter. 

 

THE PUTATIVE AVIAN SUPRACHIASMATIC NUCLEUS 

 Based on cytoarchitectural evidence in early studies, the mSCN was identified as 

the SCN homolog (Crosby and Showers, 1969; Kuenzel and van Tienhoven, 1982; van 

Tienhoven and Juhasz, 1962).  Some studies claim to have identified RHT terminals in 

the mSCN in house sparrows (Hartwig, 1974), Java sparrows (Ebihara and Kawamura, 

1981) and Japanese quail (Oliver et al., 1978), although it is generally accepted that this 

input is weak and highly questionable, with the exception of a strong Cholera toxin b-

subunit (CTB) signal in pigeons (Shimizu et al., 1994).  The vSCN seems to be the 

primary, if not only, retinorecipient hypothalamic nucleus in the ringdove, Streptopelia 

risoria (Cooper et al., 1983; Norgren and Silver, 1989), house sparrow (Cassone and 

Moore, 1987), pigeon (Meier, 1973; Shimizu et al., 1994), duck (Bons, 1976) and 

chicken (Shimizu et al., 1984). 

 Chemoarchitectural studies have provided another means of comparison between 

these two structures and the mammalian SCN, which has a well-documented, 

heterogeneous antigen distribution.  In rodents, cells immunoreactive for vasoactive 

intestinal polypeptide (VIP) are found in the core, while arginine vasopressin (AVP; 
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avian homolog, arginine vasotocin) immunoreactive cells are found in the shell (Moore 

et al., 2002).  In the house sparrow, AVP immunoreactive cells are found ventral to the 

vSCN, while VIP positive cells are found at the medial border of the vSCN (Cassone 

and Moore, 1987).  Other antigens found in the mammalian SCN include gastrin 

releasing peptide (GRP), glutamic acid decarboxylase, neuropeptide Y, neurotensin, 

serotonin, somatostatin and substance P (Moore et al., 2002), all of which are found in 

the vSCN of the house sparrow (Cassone and Moore, 1987).  While the 

chemoarchitecture of the vSCN is similar to that of the eutherian mammalian SCN, it is 

not identical; therefore, it was proposed by Cassone and Moore (1987) that the vSCN is 

the retinorecipient portion of a suprachiasmatic complex in which one or more other 

structures may be involved.   

 Lesioning studies are another classical approach employed in the identification of 

circadian components.  Ebihara et al. (1987) found that lesions of the pigeon mSCN do 

not abolish free running rhythms in all birds in constant dim light (dimLL), although, in 

some birds, temporal arrhythmicity occurs.  vSCN lesions fail to abolish free running 

rhythms.  In Japanese quail, discrete lesions of the mSCN result in normal activity in 

LD, but disrupted or abolished rhythms of locomotor activity in dimLL.  Pinealectomy 

and enucleation of mSCN lesioned quail results in birds that are completely arrhythmic 

in all circumstances (Menaker and Underwood, 1976).  In chicks, precise lesions to the 

vSCN disrupt the rhythm of norepinephrine turnover in the pineal gland.  This does not 

occur with lesions of the mSCN (Cassone et al., 1990).   
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 Analysis of clock gene expression has also been employed in the study of the 

avian SCN.  Several of these genes have been identified in the mSCN but not the vSCN 

in Japanese quail (Yoshimura et al. 2001; Yasuo et al., 2003).  In the house sparrow, 

per2 expression is rhythmic in both the mSCN and the vSCN such that it is highest 

during the mid-day (Brandstatter et al., 2001), which is similar to the phasing seen in the 

mouse SCN (Tei et al. 1997).  The house sparrow vSCN also rhythmically expresses 

per2 mRNA, although the phase is slightly delayed compared to the mSCN (Abraham et 

al., 2002). Both the mSCN and vSCN express mRNA of the cryptochrome gene cry2 

(Bailey et al., 2002).  In comparison, many genes in the mammalian SCN are also 

expressed rhythmically in vivo and in vitro (Yamazaki et al., 2000; Hastings and Herzog, 

2004).  Numerous clock genes have been found within the SCN that interact to drive 

rhythmic mRNA and protein expression with a period of about 24 hours.  This 

oscillation impinges upon output pathways that produce overt circadian rhythms 

(Dunlap, 1999).    

A variety of other studies have reported results indicating that the vSCN is a 

circadian structure.  House sparrows show rhythmic uptake of 2-deoxy[14C]glucose 

(2DG) metabolism in vivo in the vSCN and not the mSCN (Cassone, 1988).  This 

rhythm of 2DG uptake in the vSCN may be entrained by a 12:12 cycle of melatonin 

treated water:untreated water in which vSCN activity is high during the subjective day 

and low during the subjective night.  This is not found to be the case in the mSCN (Lu 

and Cassone, 1993b).  Further, the radiolabeled melatonin agonist IMEL binds to the 

vSCN, but not the mSCN, of chickens (Brooks and Cassone, 1992).  In Japanese quail, 
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the vSCN has rhythmic electrical activity in vitro (Juss et al., 1994).  Similarly, the 

mammalian SCN displays rhythms of neuronal firing in vivo and in vitro (Inouye and 

Kawamura, 1979; Green and Gillette, 1982; Groos and Hendriks, 1982; Shibata et al, 

1982).  Finally, c-fos, an immediate early gene that may be induced in the mammalian 

SCN by 1-hour pulses of light, may also be induced in the vSCN, but not in the mSCN, 

of quail and starlings (King and Follett, 1997).   The data available regarding the avian 

SCN is not sufficient to designate homology to either the mSCN or the vSCN. 

 

VISUAL SYSTEM PATHWAYS 

Studies have suggested that the circadian system is involved in regulation of the 

visual system (McGoogan and Cassone, 1999; Wu et al., 2000).  The avian visual system 

is, as it is in mammals, comprised of four integrated pathways (Cassone and Moore, 

1987; Nalbach et al., 1993), each of which bind the melatonin agonist 2-[125I]-

iodomelatonin (IMEL) at every level of sensory integration (Cassone et al., 1995). The 

circadian/hypothalamic pathway consists of the retinohypothalamic tract and its 

terminus, the vSCN (Cassone and Moore, 1987). The tectofugal pathway, the avian 

homolog of the colliculoextrastriate pathway, which is involved in gross visual 

detection, consists of the optic tectum, nucleus rotundus and ectostriatum (Engelage and 

Bischoff, 1993). The thalamofugal pathway is involved in binocular and fine vision and 

is homologous to the geniculostriate pathway. This pathway comprises the principal 

optic nucleus and visual Wülst (Güntürkün et al., 1993). Finally, the accessory optic 

pathway, which controls eye movement, consists of the nucleus of the basal optic root 
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and associated structures, the oculomotor nucleus and the cerebellum.  The nucleus of 

Edinger-Westphal is also associated with the accessory optic pathway (Nalbach et al., 

1993; Wallman and Letelier, 1993), since it regulates ocular physiology autonomically 

(Gamlin et al., 1982; Fitzgerald et al., 1990; Reiner et al., 1990).   

 

OBJECTIVES AND SIGNIFICANCE 

The fundamental question of this dissertation is, where is the avian homologue to 

the mammalian SCN?  The model animal of the work described was performed in the 

chicken, Gallus domesticus.  First, 2-deoxy[14C]glucose (2DG) uptake was studied to 

determine what structures in the hypothalamus are rhythmic, and whether they are 

affected by melatonin.  This approach was taken because the SCN of mammals is 

rhythmic in many of its physiological properties, including glucose utilization in vivo 

and in vitro (Schwartz and Gainer, 1977; Schwartz et al., 1980; Newman et al., 1992).   

Next, tract tracing techniques were used to determine the path of the RHT as well 

as the efferent and afferent connections of the mSCN and vSCN in order to determine 

whether one or both have connectivity similar to mammals.  The mammalian SCN 

receives a number of afferents from cerebral structures, which send their termini to 

either the core or the shell of the SCN.  There are three major inputs to the core.  The 

first, and most well studied, is the retina, which sends its afferents via the 

retinohypothalamic tract (RHT; Moore, 1973; Moore and Lenn, 1972; Moore et al., 

1971).  Second, the intergeniculate leaflet and the pretectal area, which receive primary 

visual input, send a projection called the geniculohypothalamic tract (GHT) to the SCN 
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(Card and Moore, 1982, 1989; Moore et al., 1984; Harrington et al., 1985; Moore and 

Speh, 1993; Moore and Card, 1994).  Third, serotonergic input arises from the midbrain 

raphe (Moore et al., 1978; Pickard, 1982; Moga and Moore, 1997).  There are many 

nuclei that project almost exclusively to the shell of the mammalian SCN, including at 

least nine different nuclei in the adjacent hypothalamic area and the limbic system, 

which includes the lateral septal nucleus, the ventral subiculum and the infralimbic 

cortex (cf. Moga and Moore, 1997).  Three regions send inputs to both the core and the 

shell of the mammalian SCN, including the thalamic paraventricular nucleus (PVT), the 

tuberomammillary nucleus and the subparaventricular zone (SPVZ).  The SPVZ is 

ventral to the hypothalamic paraventricular nucleus (PVN), and appears to be part of a 

network of local circuits that includes the SCN (van den Pol, 1980; Watts, 1991).   

Efferent fibers to many structures arise in the rodent SCN; however, the 

subdivision of these efferents between the core and the shell has not been detailed in 

publication (Watts and Swanson, 1987; Watts, 1991).  Among these efferents are the 

intergeniculate leaflet, the preoptic area, SPVZ, PVT, and PVN.  Interestingly, injections 

that encroach on the peri-SCN area and SPVZ send a larger contingent of fibers to these 

efferents than does the SCN itself.  Other SCN fibers terminate in the lateral septal 

nucleus, the ventromedial and dorsomedial hypothalamic nuclei, the retrochiasmatic 

area, the posterior hypothalamus, the parataenial nucleus and the periaqueductal gray.  

The specific purpose of each connection is not known; however, it is abundantly clear 

that the SCN, the peri-nuclear area surrounding it and SPVZ are highly interconnected 

with a variety of structures, forming a complex network of interactions (cf. Watts, 1991). 
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Finally, retinal input to the mSCN and vSCN were reexamined using a second 

tract tracing method and the antigen distribution of the chick suprachiasmatic area was 

studied in order to draw anatomical comparisons between the chick, the house sparrow, 

described above, and mammals.  In rodents, the core is retinorecipient, receiving light 

information transmitted by the RHT, as described previously.  Antigen distribution is 

well characterized in the rodent SCN.  The core contains neurons positive for vasoactive 

intestinal polypeptide, gastrin releasing peptide, substance P and neurotensin.  The shell 

reacts positively with antibodies against vasopressin, enkephalin and somatostatin.  

Calretinin is found in both the core and the shell (Moore et al., 2002).  Different from the 

situation in rodents, retinal input to the marsupial SCN terminates in the dorsomedial 

aspect, which is immunoreactive for both AVP and VIP immunoreactivity (Cassone et 

al., 1988b).  Thus, specific details of immunohistochemical distributions in the SCN are 

phylogenetically labile even among mammals.  The information obtained in the current 

studies, in concert with previously reported data, has led to the development of a 

working model of an avian suprachiasmatic complex, in which both the mSCN and 

vSCN are involved.   



16 

CHAPTER II 

DAILY AND CIRCADIAN FLUCTUATION IN 2-DEOXY[14C]-GLUCOSE UPTAKE 

IN CIRCADIAN AND VISUAL SYSTEM STRUCTURES OF THE CHICK BRAIN:  

EFFECTS OF EXOGENOUS MELATONIN∗ 

 

INTRODUCTION 

The circadian system has evolved to accurately time behavioral, physiological 

and metabolic outputs, aiding in the survival of organisms ranging from bacteria to 

vertebrates (Pittendrigh, 1993; Menaker and Tosini, 1995). In vertebrates, this system is 

composed of multiple photoreceptors, central oscillators and outputs. In birds, the 

photoreceptors are present in the retinae, the pineal gland and in the brain itself. Central 

oscillators in vertebrates are located in three structures—the pineal gland, the retinae and 

hypothalamic suprachiasmatic nuclei (SCN) (Menaker and Tosini, 1995). A number of 

measurable outputs have been identified in a variety of avian species, including 

locomotor activity, body temperature, feeding activity and plasma melatonin levels. 

Birds have a particularly complex circadian system. The pineal gland synthesizes 

and secretes the hormone melatonin during the night both in vivo and in vitro in all 

species studied  (Cassone, 1990; Klein et al., 1997). It is likely that the pineal affects 

overt rhythmicity in  many species  through  the effects of melatonin (Klein et al., 1997), 

                                                           
∗ Reprinted from Brain Research Bulletin, Vol 57, EL Cantwell and VM Cassone, Daily and 
circadian fluctuation in 2-deoxy[14C]-glucose uptake in circadian and visual system structures of the 
chick brain: effects of exogenous melatonin, Pages 603-611, Copyright © (2002), with permission 
from Elsevier. 
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although as a circadian pacemaker, the pineal gland varies in its importance among 

birds. For example, pinealectomy (PINX) abolishes locomotor activity (Gaston and 

Menaker, 1968; Gaston, 1971; Ebihara and Kawamura, 1981) and body temperature 

(Binkley et al., 1971) rhythms in house sparrows (Passer domesticus) and Java sparrows 

(Padda oryzivora) (Ebihara and Kawamura, 1981). In chickens, however, PINX fails to 

abolish feeding activity rhythms (McGoogan and Cassone, 1999). The retinae also 

produce and secrete melatonin rhythmically such that it is high during the night and low 

during the day in chickens, Gallus domesticus (Binkley et al., 1979; Hamm and 

Menaker, 1980; Reppert and Sagar, 1983), Japanese quail, Coturnix coturnix 

(Underwood and Siopes, 1984) and pigeons, Columba livia (Adachi et al., 1995). 

Bilateral enucleation (EX) of Japanese quail results in the loss of activity and body 

temperature rhythms. In pigeons, EX disrupts these rhythms while PINX/EX abolishes 

them (Ebihara et al., 1984). Periodic melatonin infusions or administration reestablish 

and maintain activity rhythms in PINX house sparrows (Lu and Cassone, 1993b; Heigl 

and Gwinner, 1995) and in PINX/EX pigeons (Chabot and Menaker, 1994). It has 

therefore been suggested that the variability among species concerning the effects of 

pinealectomy is due to the relative contribution of retinal melatonin (Underwood and 

Goldman, 1987). 

There are two candidates for an avian homologue of the SCN, which have been 

established as the primary circadian pacemaker in mammals (Moore, 1979; Rusak and 

Zucker, 1979; Moore, 1982). The two areas of interest are the periventricular preoptic 

nucleus, also called the medial SCN (mSCN) (Norgren and Silver, 1990) and the visual 
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SCN (vSCN) (Cassone and Moore, 1987). The mSCN is positioned in the preoptic 

recess of the third ventricle and dorsal of the optic chiasm, which is close to the position 

of the mammalian SCN. The vSCN, on the other hand, is caudal and lateral to the 

mSCN. It is also positioned dorsal of the optic chiasm and sits between the ventrolateral 

geniculate nucleus and the supraoptic decussation. The vSCN of the house sparrow is 

rhythmic in its uptake of 2DG in both LD and DD. This rhythm is high during the 

day/subjective day and low in the night/subjective night. The mSCN displays no rhythm 

of uptake (Cassone, 1988). The 2DG uptake rhythm is also synchronized by daily 

melatonin administration to sparrows housed in DD. Uptake is low during the period of 

melatonin infusion and is significantly higher when melatonin infusion is discontinued 

(Lu and Cassone, 1993b). Further, melatonin injection during the day inhibits 2DG 

uptake (Cassone and Brooks, 1991). Finally, the vSCN, but not the mSCN, specifically 

bind the melatonin agonist 2[125I]iodomelatonin (IMEL) with very high affinity in many 

species of bird (Rivkees et al., 1989; Cassone and Brooks, 1991; Brooks and Cassone, 

1992; Cassone et al., 1995). 

Central visual system structures are also sites of IMEL binding in many avian 

species (Rivkees et al., 1989; Cassone and Brooks, 1991; Cassone et al., 1995). The 

avian visual system is, as in mammals, comprised of four integrated pathways (Cassone 

and Moore, 1987; Nalbach et al., 1993), each of which bind IMEL at every level of 

sensory integration. The circadian/hypothalamic pathway consists of the 

retinohypothalamic tract and its terminus, the vSCN (Cassone and Moore, 1987). The 

tectofugal pathway, the avian homolog to the colliculoextrastriate pathway, involved in 
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gross visual detection, consists of the optic tectum, nucleus rotundus and ectostriatum 

(Engelage and Bischof, 1993). The thalamofugal pathway is involved in binocular and 

fine vision and is homologous to the geniculostriate pathway. This pathway comprises 

principal optic nucleus and visual Wülst (Güntürkün et al., 1993). Finally, the accessory 

optic pathway controls eye movement and consists of the nucleus of the basal optic root 

and associated structures, the oculomotor nucleus and the cerebellum.  The nucleus of 

Edinger-Westphal is associated with the accessory optic pathway (Nalbach et al., 1993; 

Wallman and Letelier, 1993), since it regulates ocular physiology autonomically.  In 

each case, retinorecipient and integrative structures of each pathway bind IMEL 

(Cassone et al., 1995). 

In this paper, we show that 2DG uptake is rhythmic in the brain of the chicken, 

Gallus domesticus, in both LD and DD. Further, we demonstrate that administration of 

exogenous melatonin decreases daytime cerebral 2DG uptake, in some but not all 

rhythmic structures, similar to the situation in the house sparrow. 

 

MATERIALS AND METHODS 

Animals 

Male White Leghorn chicks (Gallus domesticus) were obtained from Hy-Line 

Hatcheries (Bryan, TX) on their hatch date and were raised to two weeks of age in a 

heated brooder on a light:dark (LD) 12:12 cycle (lights on from 6:00 a.m. to 6:00 p.m. 

CST). Food and water were continuously available until the day before the experiment, 

at which time they were removed.  All animal use protocols were reviewed and approved 
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by the University Laboratory Animal Care Committee (ULACC) at Texas A&M 

University. 

 

Experiment 1: 2DG fluctuation in the chick brain over time of day 

Chicks were injected with 2-deoxy [14C]glucose (2DG; 200µCi/kg; 

300mCi/mmol; American Radiolabeled Chemicals, St. Louis, MO) in the pectoral 

muscle at ZT6 (n=5) and ZT18 (n=5; Zeitgeber time, 6 and 18 hours after lights on, 

respectively). The birds were caged individually for one hour and then decapitated. Their 

brains were removed, frozen in 2-methylbutane and stored at –80oC. Upon completion of 

this procedure at ZT18, the lights were disabled and the process of injection and 

decapitation was repeated in constant darkness (DD) at CT6 (n=5) and CT18 (n=5; 

Circadian time). These CT times were determined based on the preceding light cycle. 

 

Experiment 2: Effects of melatonin on 2DG uptake 

Chicks (n=10) were injected with ethanolic saline (0.5%; 1mL/kg) or melatonin 

(10µg/kg) in ethanolic saline and individually caged for fifteen minutes at ZT10. This 

timepoint was chosen because it is the peak time of 2-[125I]iodomelatonin (IMEL) 

binding in the chick brain (Brooks and Cassone, 1992). The chicks were then injected 

with 200µCi/kg 2DG in the pectoral muscle and placed back into their cages for 45 

minutes. At the end of this time, they were decapitated. Brains were removed and treated 

as in Experiment 1. 
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Brain sectioning and autoradiography 

Brains were coronally sectioned (30µm) rostrocaudally from the ectostriatum to 

the nucleus of Edinger-Westphal. Sections were thaw-mounted onto gelatin-coated slides 

and apposed to Kodak BioMax MR film (VWR, Sugar Land, TX) along with 14C 

standard slides (American Radiolabeled Chemicals, St. Louis, MO). One week after 

exposure, the films were developed with Kodak D19 developer, fixed, rinsed and dried. 

Sections were fixed in alcohol, stained with cresyl violet stain, dehydrated, cleared and 

coverslipped for histological localization. 

 

Data analysis 

The autoradiographic films were converted to computer images using the Java 

image analysis program (SPSS Inc., Chicago, IL). Representative sections from 

Experiments 1 and 2 are shown in Figures 1 and 2, respectively. Brain structures of 

specific interest, as well as structures showing prominent activity, were selected from all 

four visual pathways. From the circadian pathway, the vSCN was observed. We also 

chose to analyze the pineal gland (Pin) and periventricular preoptic nucleus (mSCN) as 

structures associated with circadian function. From the tectofugal pathway, we selected 

the optic tectum (TeO), ventrolateral geniculate nucleus (GLv), nucleus rotundus (Rot) 

and ectostriatum (E). Accessory optic pathway-associated components nucleus of 

Edinger-Westphal (EW) and cerebellum (Cb) were also chosen. Finally, from the 

thalamofugal pathway, the visual Wülst (HA) was selected. Using the Nissl-stained 
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Fig. 1. Representative sections used to analyze 2DG uptake over time of day. Structures 
that were visible and of particular interest were analyzed for 2DG uptake in LD and DD. 
This figure shows representative brain sections video-digitized from autoradiographic 
films. Each column represents the time point indicated above it. From top to bottom, the 
sections progress rostrocaudally through the chicken brain. Each row represents one 
level in the chick brain. The structures studied are labeled on the ZT6 column. ZT6 
corresponds to the middle of the day; ZT18 corresponds to the middle of the night. CT6 
and CT18 correspond to mid-subjective day and mid-subjective night respectively in 
chicks maintained in constant darkness. 
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Fig. 2. Representative sections used to analyze effects of exogenous melatonin on 2DG 
uptake. Structures studied in Experiment 1 were further tested to determine whether an 
intramuscular injection of melatonin could affect 2DG uptake at ZT10, the peak time of 
2-[125I]iodomelatonin binding in the chick brain. Comparable brain sections from saline-
injected and melatonin-injected chickens are presented side-by-side at six different 
levels, which are shown rostrocaudally from top to bottom. Structures are labeled in the 
Saline control column. 
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sections to localize structures, 2DG uptake was quantified densitometrically using the 

image analysis program, SigmaScan Pro (SPSS Inc., Chicago, IL). Densitometric values 

were converted to pmol/mg/hr. The densitometric values were then subjected to 

statistical analysis using SAS (SAS Institute, Inc., Cary, NC). A one-way analysis of 

variance procedure was performed to determine statistical significance within a 95% 

confidence interval (p<0.05). Tukey’s post hoc test was used to determine which values 

were significantly different from one another. 

 

RESULTS 

Experiment 1: 2DG fluctuation in the chick brain over time of day 

Three structures associated with circadian function were observed—the vSCN, 

mSCN and Pin. Of these, only the vSCN displayed significant day/night differences of 

2DG uptake in both LD and in DD (Fig. 3A). While uptake in the mSCN showed no 

significant daily change, even though a trend was apparent, a circadian difference of 

2DG uptake was observed (Fig. 3B). Pin showed neither a daily nor a circadian 

difference in uptake (Fig. 3C). 

2DG uptake was measured in seven visual system structures from the other three 

pathways. In the tectofugal pathway (Fig. 4), we found that GLv (Fig. 4B), nRot (Fig. 

4C) and E (Fig. 4D) displayed daily changes in uptake, but that these differences were 

not maintained in DD.  TeO displayed both daily and circadian fluctuations of 2DG 

uptake (Fig. 4A). From the thalamofugal pathway, HA displayed daily, but not circadian,  
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Fig. 3. 2DG uptake over time of day in circadian structures. Structures associated with 
the circadian system were analyzed for changes in 2DG uptake. The y-axis for each chart 
was set to the same scale such that amplitude differences between structures could be 
observed. A The  vSCN showed daily and circadian differences in uptake. B mSCN 
varied in uptake in DD, but not LD. The amplitude of 2DG uptake in this structure was 
40% lower than the vSCN at ZT6. The other time points were at similar levels. C Pin 
showed no significant differences in uptake. Uptake was comparatively low in this 
structure. Asterisks indicate a significant difference between ZT6 and ZT18 values, 
while dark circles indicate a significant difference between CT6 and CT18 values. 
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Fig. 4. 2DG uptake over time of day in tectofugal structures. The tectofugal pathway is 
represented. A-C have y-axes on the same scale. As E has a very high amplitude, its y-
axis was given a separate scale. A TeO showed uptake differences in LD and DD. B-D 
GLv, nRot and E showed daily, but not circadian, changes in 2DG uptake.  TeO and 
GLv show slightly less activity than nRot at all time points.  Asterisks indicate a 
significant difference between ZT6 and ZT18 values, while dark circles indicate a 
significant difference between CT6 and CT18 values. 
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Fig. 5. 2DG uptake over time of day in thalamofugal structures. This pathway is 
represented by HA, which displayed daily, but not circadian, fluctuation in uptake. The 
amplitude of uptake in HA is comparable to that of TeO and GLv in Figure 4.  Asterisks 
indicate a significant difference between ZT6 and ZT18 values, while dark circles 
indicate a significant difference between CT6 and CT18 values. 
 

 

 

Fig. 6. 2DG uptake over time of day in accessory optic structures. The accessory optic 
pathway y-axes are on the same scale. A EW showed daily and circadian fluctuations of 
2DG uptake, as well as higher amplitude uptake at ZT6 and CT6 compared to B Cb, 
which showed a daily, but not circadian, change in uptake.  Asterisks indicate a 
significant difference between ZT6 and ZT18 values, while dark circles indicate a 
significant difference between CT6 and CT18 values.
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Fig. 7. 2DG uptake over time of day in other structures of interest. Two other prominent 
structures were measured. A PVN showed both daily and circadian changes in 2DG 
uptake. This uptake is low-amplitude when compared with the visual system structures. 
B MLd showed high amplitude uptake which varied both daily and in a circadian 
fashion.  Asterisks indicate a significant difference between ZT6 and ZT18 values, while 
dark circles indicate a significant difference between CT6 and CT18 values. 
 
 
 
TABLE 1. Analysis of 2DG uptake from Experiment 1 

 Light:Dark 12:12  Constant Darkness 

structure 
ZT6 

mean ± stderr 
ZT18 

mean ± stderr p-value 

 CT6 
mean ± stderr 

CT18 
mean ± stderr p-value 

HA 3.898 ± 0.467 1.779 ± 0.131 0.0024  1.805 ± 0.233 1.323 ± 0.149 0.1196 

E 17.207 ± 4.601 2.772 ± 0.131 0.0139  5.067 ± 0.885 3.169 ± 0.402 0.0867 

mSCN 1.740 ± 0.210 1.251 ± 0.202 0.1435  1.294 ± 0.149 0.860 ± 0.091 0.0376 

GLv 3.829 ± 0.307 1.784 ± 0.127 0.0003  1.991 ± 0.291 1.392 ± 0.131 0.0969 

vSCN 3.389 ± 0.268 1.601 ± 0.051 0.0002  2.091 ± 0.353 1.060 ± 0.090 0.0221 

PVN 2.588 ± 0.203 1.647 ± 0.093 0.0063  1.789 ± 0.160 1.131 ± 0.070 0.0417 

nRot 5.313 ± 0.660 2.639 ± 0.172 0.0044  3.895 ± 0.667 2.385 ± 0.234 0.0653 

Pin  1.979 ± 0.183 1.838 ± 0.094 0.5118  1.559 ±0.237 1.537 ± 0.171 0.9424 

TeO 3.495 ± 0.188 1.859 ± 0.040 0.0001  2.299 ± 0.315 1.383 ± 0.170 0.0337 

Cb 2.608 ± 0.177 1.886 ± 0.081 0.0052  1.778 ± 0.146 1.276 ± 0.177 0.0607 

MLd 7.907 ± 1.386 4.470 ± 0.609 0.0410  8.231 ± 1.608 4.242 ± 0.542 0.0467 

EW 4.159 ± 0.116 2.011 ±0.161 0.0001  3.267 ± 0.277 1.870 ± 0.347 0.0327 

All values are given in pmol/mg/hr.  For abbreviations, see list. 
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changes in uptake (Fig. 5). Of the accessory optic structures studied, EW displayed both 

daily and circadian changes in 2DG uptake (Fig. 6A). The cerebellum (Fig. 6B) showed 

daily fluctuations in uptake but none in DD. 

The 2DG uptake of two other prominent structures of the brain was studied (Fig. 

7). The MLd, an auditory system structure, displayed differences in both LD and DD 

(Fig. 7B). Finally we observed the PVN, which acts as a hypothalamic and autonomic 

relay center.  This structure also displayed both daily and circadian changes in 2DG 

uptake (Fig. 7A).  The means, standard errors and p-values of all comparisons between 

LD and DD timepoints are presented in Table 1.   

Statistical analysis indicates that uptake values at the daytime time points, ZT6 

and CT6, were significantly different from each other in the majority of structures 

studied. Of the three circadian structures, only the vSCN showed such a difference 

(p=0.0190). The visual structures HA (p=0.0039), E (p=0.0321), GLv (p=0.0024), TeO 

(p=0.0115), EW (p=0.0411) and Cb (p=0.0082) showed variance in their daytime values. 

PVN (p=0.0059) also showed significant changes in daytime uptake. Conversely, the 

majority of structures did not display significant differences in their values at ZT18 and 

CT18. Those that did, vSCN (p=0.0008), PVN (0.0028), TeO (p=0.0259) and Cb 

(p=0.0141), had also experienced significant differences in their daytime timepoint 

values. 
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Fig. 8. Effects of exogenous melatonin on 2DG uptake. The effects of exogenous 
melatonin administration were observed in all structures analyzed in Experiment 1. Of 
these structures, only two—A vSCN and B E—showed a significant effect of melatonin. 
The two other circadian associated structures—C mSCN and D Pin—showed no effect 
of melatonin on 2DG uptake.  Asterisks indicate a significant difference between ZT6 
and ZT18 values. 
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 TABLE 2. Analysis of 2DG uptake from Experiment 2 

structure 
Saline 

mean ± stderr 
Melatonin 

mean ± stderr p-value 
HA 5.118 ± 0.369 3.979 ± 0.399 0.0695 
E 11.786 ± 1.102 7.085 ± 0.908 0.0110 

mSCN 2.107 ± 0.142 2.222 ± 0.133 0.5745 
GLv 4.268 ± 0.402 3.776 ± 0.333 0.3743 

vSCN 3.945 ± 0.310 2.855 ± 0.063 0.0089 
PVN 3.156 ± 0.303 3.060 ± 0.285 0.8238 
nRot 6.314 ± 0.558 5.447 ± 0.415 0.2476 
Pin  2.414 ± 0.122 2.577 ± 0.142 0.4080 
TeO 4.242 ± 0.350 3.973 ± 0.326 0.5894 
Cb 3.237 ± 0.190 3.353 ± 0.245 0.7218 

MLd 10.398 ± 1.295 10.432 ± 0.666 0.9816 
EW 5.644 ± 0.773 4.755 ± 0.226 0.3029 

All values are given in pmol/mg/hr.  For abbreviations, see 
list. 

 

 
Experiment 2: Effects of melatonin on 2DG uptake 

Melatonin affected 2DG uptake in two structures at ZT10, the time at which all 

Saline/Melatonin comparisons are presented in Table 2.  These structures were E and the 

vSCN (Fig. 8A,B). Uptake in these structures from animals injected by melatonin was 

significantly lower than in saline-injected animals. There was no effect of melatonin on 

2DG uptake in either the mSCN or the pineal (Fig. 8C,D).  

 

DISCUSSION 

In this study we have shown that the vSCN of chickens display both daily and 

circadian changes in 2DG uptake such that it is high during the day and low at night. 

This finding is consistent with data from the vSCN of the house sparrow (Cassone, 
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1998) and from the SCN of mammals (Schwartz, 1990). The lowered amplitude of 2DG 

uptake at CT6, when a light cue was absent, compared with ZT6 suggests that 2DG 

uptake in the vSCN is influenced by light. This conclusion is supported by studies 

finding that the RHT terminates in the vSCN of birds (Meier, 1973; Bons, 1976; Cooper 

et al., 1983; Ehrlich and Mark, 1984; Shimizu et al., 1984; Cassone and Moore, 1987; 

Norgren and Silver, 1989; Shimizu et al., 1994). Melatonin injections inhibited daytime 

uptake of 2DG in the vSCN, as was previously shown in house sparrows (Cassone, 

1991). This result is consistent with studies showing that, of the putative circadian 

structures, only the vSCN binds IMEL (Rivkees et al., 1989; Brooks and Cassone, 1992; 

Cassone et al., 1995). 

 The mSCN is interesting in that it displays circadian, but not daily, fluctuations 

in 2DG uptake (Fig. 3B). There are two possible explanations for this result. It is 

possible that a larger sample size would result in a statistically significant difference in 

LD uptake. Indeed, cursory inspection of the data leads one to believe that there is a 

daily change in mSCN 2DG uptake such that it is high during the day and low during the 

night. Alternatively, the avian SCN homolog may be a diffuse structure involving 

multiple regions in the hypothalamus including the mSCN and vSCN. This hypothesis 

may be likened to the discovery of sub-regions within the hamster SCN (LeSauter and 

Silver, 1999). Data in Chapter IV indicate that an astrocytic bridge and a neuronal 

connection link the mSCN and vSCN. Retinal input to the mSCN has been reported in 

the ringed turtledove, Streptopelia risoria (Norgren and Silver, 1990), pigeon (Shimizu 

et al., 1994), house sparrow (Hartwig, 1974), Java sparrow, (Ebihara and Kawamura, 
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1981) and Japanese quail (Oliver et al., 1978). With the exception of the Shimizu et al. 

study, this retinal projection is sparse.  Recently, partial sequences of the putative clock 

genes qclock, qper2 and qper3 have been isolated and characterized in the Japanese 

quail (Yoshimura et al., 2001). In situ hybridization of these sequences in quail brain 

indicates rhythmic expression in the mSCN but not the vSCN. In contrast, in the house 

sparrow, expression of a per2 ortholog is present in both structures, although the 

amplitude of the rhythm is greater in the mSCN than in the vSCN (Brandstatter et al., 

2001). These findings clearly support the view that the mSCN is somehow involved in 

the circadian system. 

The pineal gland shows no significant changes in 2DG uptake in LD or DD (Fig. 

3C) consistent with findings in both the house sparrow (Cassone, 1998) and the rat 

(Rosenwasser et al., 1985). Previous studies have shown that glucose is transported to 

neurons from the extracellular space by the Glut3 glucose transporter. Interestingly, 

Glut3 levels are very low in the pineal gland when compared to the rest of the brain 

(Zeller et al., 1995). These data support an earlier finding that the pineal does not rely 

upon glucose as a primary fuel source but instead utilizes fatty acid oxidation as a major 

source of energy (Vannucci and Hawkins, 1983). It remains possible that fatty acid 

utilization is rhythmic, although this has not been determined. The pineal gland also 

showed no melatonin-induced change in 2DG uptake (Fig. 8D). This result seems odd 

due to the presence of Mel1C melatonin receptor mRNA in the pineal (Reppert et al., 

1995; personal communications). However, IMEL binding is not detectable in the pineal 
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(Brooks and Cassone, 1992), indicating that either melatonin binding in the pineal is 

weak or an alternative conformation of the receptor protein exists that prevents binding. 

All seven of the visual structures studied showed a daily change in 2DG uptake 

(Fig. 4-6). With the exception of nRot, CT6 2DG uptake was significantly lower than 

ZT6 uptake. The nRot CT6 2DG uptake, while not significantly so, was also lower than 

ZT6 uptake. These data suggest that the metabolic activity of these visual structures is at 

least partially light dependent. Two visual structures, TeO and EW, showed a circadian 

fluctuation of 2DG uptake, also indicating circadian control of these two structures. TeO 

is the retinorecipient structure of the tectofugal pathway, which is involved in gross 

visual detection. This is interesting not only because it is the second retinorecipient 

structure to show circadian rhythmicity, but also because it is involved in the 

transduction of visual information. This observation is consistent with 

electrophysiological data indicating circadian variation in tectal-evoked potentials, in 

which responses to light pulses are higher during the day than during the night (Wu et 

al., 2000). 

EW, on the other hand, is not retinorecipient. It receives projections from the 

oculomotor nucleus and the vSCN (Gamlin et al., 1982). However, EW sends 

projections back to the eye, regulating choroidal blood flow and retinal musculature via 

the ciliary ganglion (Gamlin and Reiner, 1991). The circadian change in 2DG uptake 

suggests that EW may be under circadian control such that the local atmosphere of the 

eye may be properly regulated. Only one visual structure, E of the tectofugal pathway, 

showed an effect by melatonin on uptake (Fig. 8B). E has been shown to strongly bind 
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IMEL, however so have other structures that were not significantly affected by 

melatonin (Lu and Cassone, 1993a). These data suggest that melatonin is not the only or 

even primary modulator of energy metabolism within the chick visual system. 

PVN, which receives projections directly from the SCN in mammals, showed 

both daily and circadian changes in 2DG uptake (Fig. 7A). PVN also showed a 

significant ZT6/CT6 difference in uptake. These data suggest a role for the circadian 

system and light dependence in the control of PVN. Indeed it seems logical that such a 

multi-purpose structure would be under tight control in order to maintain proper brain 

function in DD. The MLd  (Fig. 7C) showed both daily and circadian changes in uptake 

but did not show a significant difference between daytime time points, suggesting that it 

is controlled by the circadian system but is not light dependent. Neither of these 

structures showed an effect of melatonin on 2DG uptake, yet the MLd, at least, has been 

reported to contain melatonin receptors (Rivkees et al., 1989; Reppert et al., 1995). 

It is clear that the circadian system is involved in the regulation of the visual 

system as a whole, although its importance to individual structures differs. Circadian 

fluctuation of 2DG uptake in the vSCN, mSCN, TeO, EW, PVN and MLd indicates that 

the circadian system is involved in the regulation of glucose metabolism. This 

regulation, however, would appear to occur in a subset of structures throughout the 

brain. Light seems to play a major role in the modulation of glucose metabolism: most of 

the studied structures presented higher daytime uptake when a light stimulus was 

present. Melatonin, on the other hand, did not affect uptake in many structures, 

suggesting that it is not a major regulator of energy production. It is important to 
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reiterate that melatonin was only injected at one time of day, ZT10. This time was 

chosen because it is the peak time of IMEL binding in the chick brain (Brooks and 

Cassone, 1992). Therefore it remains possible that melatonin injected at an alternate time 

would have more or less of an effect on 2DG uptake in the brain of the chick, suggesting 

useful experiments for the future. Overall, the data presented suggest that complex 

interactions of melatonin, light and, most certainly, other circadian and homeostatic 

factors regulate cerebral glucose utilization. 
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CHAPTER III 

THE CHICKEN SUPRACHIASMATIC NUCLEI: 

EFFERENT AND AFFERENT CONNECTIONS 

 
INTRODUCTION 

 Circadian systems are composed of multiple inputs, oscillators and outputs.  

Timing cues are transduced via input pathways to oscillators, which then drive rhythms 

and/or entrain sub-oscillators through output pathways (Menaker and Tosini, 1995).  In 

vertebrates, these components comprise at least the retinae, the suprachiasmatic nuclei of 

the hypothalamus and the pineal gland, each of which vary in system-level importance 

among taxa and within each taxon (Menaker and Tosini, 1995). 

 In the mammalian circadian system, the suprachiasmatic nucleus (SCN) is the 

primary circadian pacemaker (Moore, 1979).  First, the SCN receives significant direct 

retinal input via the retinohypothalamic tract (RHT) (Moore et al., 1971; Moore and 

Lenn, 1972; Moore, 1973), and the SCN of eutherian mammals (but not of marsupial 

mammals) may be subdivided, based on neuroanatomical and functional characteristics 

(Cassone et al., 1988b), into the retinorecipient ventrolateral SCN, known as the “core”, 

and the dorsomedial region, the “shell” (Moore et al., 2002).  Secondly, surgical 

destruction of the entire SCN results in arrhythmic locomotor behavior (Moore and 

Eichler, 1972; Stephan and Zucker, 1972; Moore and Klein, 1974; Klein and Moore, 

1979), and transplantation of fetal SCN tissue into the third ventricle of arrhythmic, 

SCN-lesioned rodents restores rhythmicity in locomotor activity (Drucker-Colin et al., 

1984; Sawaki et al., 1984; Lehman et al., 1987).  Finally, many aspects of SCN 
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physiology oscillate with a circadian period, including glucose utilization in vivo and in 

vitro (Schwartz and Gainer, 1977; Schwartz et al., 1980; Newman et al., 1992), neuronal 

firing in vivo and in vitro (Inouye and Kawamura, 1979; Green and Gillette, 1982; Groos 

and Hendriks, 1982; Shibata et al, 1982), and gene expression in vivo and in vitro 

(Yamazaki et al., 2000; Hastings and Herzog, 2004).   

 Birds have a more complex circadian system than do mammals, since the pineal 

gland and retinae participate as independent oscillators and pacemakers as well.  The 

pineal gland rhythmically synthesizes and secretes the hormone melatonin such that 

levels are high during the night and low during the day in vivo and in vitro, a rhythm that 

persists for up to four circadian cycles in constant darkness (DD; cf. Natesan et al., 

2002).  The retinae also rhythmically synthesize melatonin in chickens (Binkley et al. 

1979, Hamm and Menaker 1980), Japanese quail (Underwood and Siopes 1984) and 

pigeons (Oshima et al., 1989; Adachi et al., 1995). This rhythm is important for overt 

circadian organization in some species. Bilateral enucleation results in the loss of 

rhythmic activity and body temperature in Japanese quail (Underwood and Siopes, 1984) 

and chickens (Nyce and Binkley, 1977).  In pigeons, enucleation partially disrupts 

activity and body temperature rhythms but, when paired with pinealectomy, abolishes 

these rhythms (Ebihara et al., 1984; Chabot and Menaker, 1994).   

Several features of circadian organization in birds suggest the presence of 

another oscillator in the anterior hypothalamus, possibly homologous to the mammalian 

SCN (Ebihara and Kawamura, 1981; Simpson and Follett, 1981; Takahashi and 

Menaker, 1982).  Early cytoarchitectural evidence suggested that a region located near 
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the preoptic recess of the third ventricle is the avian SCN (Crosby and Showers, 1969).  

This structure has been labeled the periventricular preoptic nucleus (PPN; van 

Tienhoven and Jühász, 1962; Cassone and Moore, 1987; revised nomenclature, POP; 

Kuenzel and Masson, 1988), the SCN (Hartwig, 1974, Kuenzel and van Tienhoven, 

1982; Brandstatter et al., 2001), the medial hypothalamic nucleus (MHN; Norgren and 

Silver, 1989), the medial hypothalamic retinorecipient nucleus (MHRN; Shimizu et al., 

1994) and the medial SCN (mSCN; Kuenzel and Masson, 1988; Yoshimura et al., 2001).  

In the present study, we will refer to this structure as the mSCN.  The mSCN has been 

reported to receive some retinal afferents, but the label is typically weak (Hartwig, 1974; 

Oliver et al. 1978) or undocumented with photomicrographs (Ebihara and Kawamura, 

1981). 

In contrast, a lateral hypothalamic nucleus is the primary, if not only, 

hypothalamic retinorecipient nucleus in a variety of species: ringed turtledove, 

Streptopelia risoria (Cooper et al., 1983; Norgren and Silver, 1989), house sparrow, 

Passer domesticus (Cassone and Moore, 1987), pigeon, Columba livia (Meier, 1973; 

Gamlin et al., 1982; Shimizu et al., 1994), duck, Anas platyrhynchos (Bons, 1976) and 

chicken, Gallus domesticus (Shimizu et al., 1984).  This structure has been referred to in 

the literature as the SCN (Gamlin et al, 1982; Cooper et al., 1983), the lateral 

hypothalamic retinorecipient nucleus (LHRN; Norgren and Silver, 1989; Shimizu et al., 

1994) and the visual SCN (vSCN; Cassone and Moore, 1987).  In this study, we will use 

the term vSCN.   
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Antigen mapping has also been utilized to identify the avian SCN.  The SCN of 

mammals is heterogeneous in its antigen distribution.  In rodents, cells immunoreactive 

for vasoactive intestinal polypeptide (VIP) are found in the core, while arginine 

vasopressin (AVP) immunoreactive cells are found in the shell (Moore et al., 2002).  

Similarly, in the house sparrow, AVP (avian homolog, arginine vasotocin) 

immunoreactive cells are found ventral to the vSCN, while VIP positive cells are found 

at the medial border of the vSCN (Cassone and Moore, 1987).  Other antigens found in 

the mammalian SCN include gastrin releasing peptide, glutamic acid decarboxylase, 

neuropeptide Y, neurotensin, serotonin, somatostatin and substance P (Moore et al., 

2002), all of which are found in the vSCN of the house sparrow (Cassone and Moore, 

1987).  While the chemoarchitecture of the vSCN is similar to that of the eutherian 

mammalian SCN, it is not identical; therefore, it was proposed by Cassone and Moore 

(1987) that the vSCN is the retinorecipient portion of a suprachiasmatic complex in 

which one or more other structures may be involved.   

 The present study is an analysis of the synaptic connections of both the vSCN 

and the mSCN of the chicken, Gallus domesticus, and examines whether efferent and 

afferent connections of and between the mSCN and vSCN indicates whether one or both 

may be homologous to the mammalian SCN.  We present here a new working model of 

the avian SCN based on the current and previous studies. 
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MATERIALS AND METHODS 

Animals 

 Female Spangled Old English Bantams (Gallus domesticus) were acquired at 

Ideal Poultry (Cameron, TX) on their hatch date.  Male White leghorn chicks (Gallus 

domesticus) were obtained, also on their hatch date, from Hy-Line Hatcheries (Bryan, 

TX).  Birds were housed on a light:dark 12:12 cycle (lights on from 6:00 a.m. to 6:00 

p.m. CST) until the injections took place.  Both strains were raised in heated brooders:  

the White leghorns remained in the brooders, while the bantams were moved to unheated 

cages and grown to adulthood, about two to three months, to achieve a stable weight 

(450-720 g) before surgery.  Injections were performed on White leghorns once their 

weight reached 275-310 g, which took four to five weeks.  Food (Purina Start and Grow; 

Brazos Feed & Supply, Bryan, Texas) and water were continuously available until the 

day of the surgery, at which time it was removed.  All animal use protocols were 

reviewed and approved by the University Laboratory Animal Care Committee (ULACC) 

at Texas A&M University (Animal Use Protocol #2001-163). 

 

Determination of stereotaxic coordinates 

 Stereotaxic coordinates for the vSCN and mSCN were determined using 26 

White leghorn chicks.  Chicks were deeply anesthetized with ketamine/xylazine drug 

cocktail (90 mg/kg ketamine, 10 mg/kg xylazine) and placed into a stereotaxic apparatus 

equipped with ear and beak bars specialized for birds.  In order to ensure a stable angle, 

coordinates were taken from three points:  ear bar zero was used as the reference point, 
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eye corner zero represented the coordinates of the posterior corner of the eye and lambda 

designated the coordinates at the intersection of the lambdoid and sagittal sutures of the 

cranium.  A stable slope was established and test lesions were performed.  After each 

lesion, the birds were immediately sacrificed; their brains were removed and flash 

frozen.  Brains were sectioned frontally at 30 µm, thaw-mounted onto slides, fixed in 

alcohol, stained with cresyl violet, dehydrated, cleared and coverslipped for localization 

of the lesions.  After obtaining a rough location for the mSCN and vSCN, the 

coordinates were refined such that we could reliably target these structures with the thin 

micropipettes used for intracerebral iontophoresis. 

 

Tract tracing agents 

 Cholera Toxin B-subunit (CTB; List Biological Laboratories, Campbell, CA) is a 

sensitive tracing agent widely used in anatomical studies.  It functions as an anterograde 

(Wu et al., 1999) and retrograde (Calaza and Gardino, 2000) tracer when injected 

intravitreally.  Injected intracerebrally, CTB also traces anterogradely and retrogradely.  

There is some evidence that suggests CTB is avidly taken up by fibers of passage (Chen 

and Aston-Jones 1995); therefore, it is more useful as a retrograde tracer. CTB has been 

used extensively in mammalian mapping studies, and many studies have demonstrated 

comparable efficacy in birds (Shimizu et al., 1994; Wu et al., 2003; Gardino et al., 

2004).  We also used 10,000 kD biotin dextran amine (BDA; Molecular Probes, Eugene, 

OR) as an anterograde tracing agent.  Previous studies have shown its ability to label 

both axons and terminals in efferent structures in birds (Veenman et al., 1992; Tombol et 
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al., 2003).  Neither CTB nor BDA cross synapses over short incubation periods, thus, 

labeling identifies direct afferents or efferents to injected and iontophoresed sites. 

 

Intravitreal injection of CTB 

 Five birds were anesthetized with ketamine/xylazine drug cocktail.  The eyelid 

was deflected and 20 µl 0.5% CTB was injected into the vitreous chamber of the eye 

with a 50 µl Hamilton syringe.  The syringe was left in place for two minutes while the 

CTB diffused away from the tip, at which time it was removed.  These birds were 

maintained in a separate cage for two (n=4) or five (n=1) days until they were sacrificed. 

 

Iontophoretic CTB injections 

 The first set of CTB iontophoretic injections was performed in the Bantam 

chickens.  Glass micropipettes (tip diameter 5-10 µm) were backfilled with 1% CTB 

solution after which 5 µl were loaded into each micropipette using a 10 µl Hamilton 

syringe.  Twenty-six Bantams were anesthetized with ketamine/xylazine drug cocktail 

and the proper head angle in a stereotaxic apparatus was achieved as described above.  

The micropipette was slowly lowered to the proper coordinates and allowed to settle for 

ten minutes.  A 5 µA current was then applied to the CTB solution for a five-minute 

cycle of 7 seconds on/7 seconds off using a Midgard power supply (Stoelting Co., Wood 

Dale, IL).  In Bantams, we directed twelve unilateral injections at the vSCN and fourteen 

at the mSCN.  Upon completion of iontophoresis, the micropipette was left in place and 

the CTB solution was allowed to diffuse away from the tip of the electrode for at least 
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ten minutes, at which time the micropipette was removed from the brain and the scalp 

was stitched closed.   

White leghorns (n=13) were injected in a second round of similar surgeries after 

the Bantam brains were processed and visualized.  Micropipettes were loaded, as 

described above, but this time with 0.5% CTB.  Eight injections were directed at the 

vSCN, five at the mSCN.  A 5 µA current, alternating on and off for 7 seconds, was 

applied to the CTB solution for ten minutes.  After ten minutes of diffusion time, the 

micropipette was removed while the CTB solution was under a continuous -5 µA current 

to further ensure that none leaked into the track made by the micropipette. 

 

 Iontophoretic BDA injections 

 Glass micropipettes (tip diameter 20-30 µm) were backfilled with 10% BDA in 

0.01 M phosphate buffer after which 5 µl were loaded into each micropipette using a 10 

µl Hamilton syringe.  White leghorn chicks (n=23) were anesthetized with 

ketamine/xylazine drug cocktail and the surgical insertion of the micropipettes was 

performed as described above.  A +5 µA current was applied to the BDA solution for 

twenty minutes in 7-second on/off cycles.   Twelve injections were directed at the vSCN, 

eleven were aimed at the mSCN.  After iontophoresis, the micropipette was left in place 

and the BDA solution was allowed to diffuse away from the tip of the electrode for at 

least ten minutes.  The micropipette was removed from the brain under constant negative 

current and the scalp was stitched closed.  
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Tissue preparation 

 Birds with CTB injections were maintained for five days; BDA injected birds, for 

eight days.  The birds were then anesthetized with ketamine/xylazine drug cocktail, 

which was supplemented as needed with halothane.  White leghorn eyes were removed 

prior to fixation and the retinae were removed and fixed in 4% paraformaldehyde.  Birds 

were transcardially perfused with 50-100 ml phosphate buffered saline (PBS; 10mM), 

followed by 300-500 ml 4% paraformaldehyde fixative.  Brains were subsequently 

removed and post-fixed for 4-16 hours. They were then cryoprotected in serial solutions 

of 10%, 20% and 30% sucrose.   

 

Brain tissue processing 

 Cryoprotected brains were frozen, frontally sectioned at 30 µm on a Lipshaw 

cryostat (Pittsburgh, PA) and rinsed in PBS.  Endogenous peroxidase activity was 

inhibited with a 15-minute incubation of 30% methanol and 0.75% hydrogen peroxide in 

PBS followed by a blocking step in PBS containing 0.3% Triton-X-100 and 1% normal 

rabbit serum (PBSRT) for 1 hour.  Sections processed for CTB immunoreactivity were 

incubated with goat anti-choleragenoid antibody (1:5000; List Biological Laboratories, 

Campbell, CA) in PBSRT for 48-72 hours at 4oC, followed by biotinylated rabbit anti-

goat secondary antibody (1:200; Vector Laboratories, Burlingame, CA) in PBSRT for 

two hours at room temperature.  Sections were incubated with avidin-biotin complex 

from a peroxidase standard kit (1:55; Vector Laboratories, Burlingame, CA) in PBSRT, 

in the case of CTB, or PBS containing 0.4% Triton-X-100, in the case of BDA, for 90 
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minutes at room temperature.  Sections were incubated in 0.5% 3-3’-diaminobenzidine 

solution in 100 mM Tris buffer for five minutes after which 0.21% hydrogen peroxide 

was added to the solution.  The color reaction was stopped as soon as background 

coloration became evident.  Sections were rinsed, put into order, mounted onto gelatin-

coated slides and dried overnight.  The slides were then rinsed in PBS and the color 

reaction was stabilized in 1% cobalt chloride solution.  The slides were rinsed, 

dehydrated, cleared and coverslipped for analysis. 

 

Retinal processing 

 Intact retinae were processed for visualization of BDA and CTB in the manner 

described above.  After the color reaction, the retinae were float mounted onto slides.  

They were then processed and coverslipped in the same manner as the brain sections. 

 

Microscopy and Photography 

 An Olympus BH-2 light microscope (Melville, NY) was used to examine 

processed tissues.  CTB immunoreactivity was observed with differential interference 

contrast optics, while BDA immunoreactivity was viewed under dark field.  

Photomicrographs were taken with an Olympus C-35AD-4 camera on Kodak Gold 200 

film (Rochester, NY).  Prints were scanned at 600 DPI and opened in Adobe Photoshop 

7.0.1 (Adobe Systems, Mountain View, CA), where they received minor brightness and 

contrast adjustments. 
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Fig. 9. Photomicrographs documenting all biotin dextran amine (BDA) and cholera toxin 
B subunit (CTB) iontophoretic injections reported in Tables 4 and 5.  BDA injections 
directed toward mSCN landed as follows: A,B mSCN, C mSCN/AM, D AM, E 
AM/POA.  CTB injections directed at mSCN landed as follows: F mSCN/POA/CO, G 
mSCN/3V, H mSCN/AM, I POA, J 3V.  BDA injections directed toward mSCN landed 
as follows: K-M vSCN, N TrO, O DSV, P dorsal to vSCN.  CTB injections directed 
toward vSCN landed as follows: Q-S vSCN, T vSCN, dorsal to vSCN and WM (defined 
in Results), U ICT, V vSCN/GLv, W GLv.  For abbreviations, see list.  Scale bar = 1 
mm in C-V; 400 µm in A,B,W.   
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Evaluation of injection sites and tracing 

CTB and BDA injection sites appeared similar to one another and were readily 

identified by dense immunoreactive fields surrounding central necrotic areas.  Previous 

studies have demonstrated that CTB and BDA are taken up and transported from the 

most densely labeled region (Leak and Moore, 2001).  Photomicrographs of reported 

injection sites are available in Figure 9.  Injection sites outside the border of these 

structures were used for two purposes.  First, Bantam and White leghorn afferents and 

efferents were compared in brains that had similar injection sites.  In this way, we were 

able to determine that there are no significant differences between the connections of the 

vSCN and mSCN of these two strains.  Secondly, injections that missed the SCN 

entirely were used to assess the accuracy of our maps.  In the analysis of tract tracing, we 

also took into account whether BDA labeled fibers were terminal or fibers of passage.  

Terminal fibers were identified by the presence of varicosities and fibers of passage by 

their thick, smooth appearance. 

 

Mapping 

 CTB cells and fibers and BDA fibers were hand drawn and then digitized onto 

plates adapted from a published chick stereotaxic atlas (Kuenzel and Masson, 1988).  

Brain structures were identified according to the nomenclature of Kuenzel and Masson 

(1988) and several published partial atlases (Kuenzel and van Tienhoven, 1982; Ehrlich 

and Mark, 1984; Reiner et al., 2004).   
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 In order to produce a map of the retina, a slide was placed on a light box and the 

outline was drawn onto a transparency.  The traced image was put onto an overhead 

projector for enlargement.  The enlarged image was scanned into Photoshop where the 

distribution of retinal ganglion cells was digitally recorded. 

 

RESULTS 

Retinal projections 

 Four intravitreal injections resulted in strong labeling of retinal terminals in the 

chick brain, including the injection that was allowed to transport for five days.  Sections 

from these brains were used to produce maps (Fig. 10) and photomicrographs (Fig. 11).  

We observed retinal terminals and, in the case of the isthmo-optic nucleus, cells, in many 

structures previously identified by tract-tracing methods and retinal degeneration.  A 

summary of these structures is provided in Table 3.  Of particular interest in this study 

was a terminal field in the vSCN (Fig. 10C-E).  This region was more strongly labeled 

after five days of transport (Fig. 11E) than it was after two days (Fig. 11F).  Labeled 

sparse cells were also identified within vSCN, and were more easily identified after two 

days of CTB transport (Fig. 11F inset) than they were after five days.  Sparse label in the 

lateral mSCN indicated both terminal fibers and fibers of passage (Figs. 10A, 11C).  

Staining in several other structures identified has not been previously reported.  Retinal 

terminals were also observed in the region dorsal to the mSCN, including the ventral 

aspect of the hypothalamic anterior nucleus (AM) and the region between mSCN and  
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Fig. 10. Maps of retinal input throughout its rostrocaudal extent following CTB injection 
to the vitreous chamber of the eye.  Structures of interest are labeled on the left 
hemisphere of each brain and retinal fibers are indicated on the right hemispheres with 
short lines.  All fibers shown are terminal fibers.  The distribution of lines represents the 
relative strength of input to each area, but do not represent measured values.  For 
abbreviations, see list. 
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Fig. 10 Continued
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Fig. 11. Representative photomicrographs of retinal input to the brain following CTB 
injection to the vitreous chamber of the eye.  Note the sparse terminal fibers in the lateral 
mSCN, as well as a dense grouping of fibers of passage on the lateral border (C) and the 
presence of cells in the anterior vSCN (E).  For abbreviations, see list.  Scale bar = 1 mm 
in A,B,G,H; 400 µm in E,C,D; 200 µm in I,J; 100 µm in F inset. 
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TABLE 3. Previously reported retinorecipient avian brain structures. 
Diencephalon 

Medial suprachiasmatic nucleus (mSCN)4,7,9,10 

Visual suprachiasmatic nucleus (vSCN) 1-3,10,11 
Lateral anterior nucleus (LA)5,10 

Ventrolateral thalamic nucleus (VLT)5 

Ventrolateral geniculate nucleus (GLv)5,10 

Rostrolateral dorsolateral nucleus (DLAlr)5,13 

Magnocellular dorsolateral nucleus (DLAmc)5,10 

Lateral dorsolateral nucleus (DLAl)5,10 

Medial dorsolateral nucleus (DLAm)5 

Dorsolateral geniculate nucleus (GLd)5,10 

Mesencephalic lentiform nucleus, magnocellular part (LMmc)5,6 
Mesencephalic lentiform nucleus, parvicellular part (LMpc)5,6 
Perirotundal area (pRot)5,10 
Diffuse pretectal nucleus (PD)5,6 
Pretectal area (AP) 
contralateral5,6,10 
ipsilateral10 

 
Mesencephalon 

Superficial gray and fiver layer of the optic tectum (SGFS), layers 2-75,6,10 
Tectal gray (GT)5 

Nucleus of the basal optic root (nBor) 
contralateral5,10 
ipsilateral8 

Isthmo-optic nucleus (IO)5,10,12 
Strength of CTB signal in retinal terminals: +++, strong; ++, moderate; +, sparse.  
For abbreviations, see list.  Species and reference: 1, duck, Bons, 1976; 2, house 
sparrow, Cassone and Moore, 1987; 3, ringdove, Cooper et al., 1983; 4, Java 
sparrow, Ebihara and Kawamura, 1981; 5, chicken, Ehrlich and Mark, 1984; 6, 
pigeon, Gamlin and Cohen, 1988; 7, house sparrow, Hartwig, 1974; 8, chicken, Mey 
and Johann, 2001; 9, quail, Oliver et al., 1978; 10, pigeon, Shimizu et al., 1994; 11, 
chicken, Shimizu et al., 1984; 12, quail, Uchiyama, 1989; 13, quail, Watanabe, 1987. 

 
 

AM (Fig. 11C).  We also found terminal fibers in a contralateral region of the anterior 

diencephalon that we believe may be homologous to the mammalian ventrolateral 

preoptic nucleus (VLPO).  Modest staining in the form of discernible terminal fibers was 

observed in this structure roughly 500 µm anterior to the vSCN and 750 µm lateral of 

the mSCN, which was in the same frontal planes of section (Figs. 10A, 11A,C).  Finally, 

terminals were found in the ipsilateral nucleus triangularis (T; Fig. 11I), dorsolateral 
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anterior nucleus, rostrolateral part (DLAlr; Fig. 11J) and the lateral anterior nucleus (LA; 

Fig. 11J).  All of these structures also receive strong contralateral input. 

 

Iontophoretic injections 

 Two BDA injections were identified within the medial suprachiasmatic nucleus 

(mSCN).  One was located in the mSCN with minor leakage caudally  (Fig. 9A), while 

the second impinged upon the optic chiasm with some possible leakage into the third 

ventricle (Fig. 9B).  Projections that were identified in both mSCN-injected brains are 

reported in Table 4.  Projections present in one brain and not the other are not described.  

Of the nine remaining injections, two were discarded due to poor tracer administration.  

Four injections were completely misplaced, resulting in projection patterns bearing no 

similarity to the mSCN efferents observed. They are not reported.  The final three 

injections were analyzed in order to critically evaluate our potential mSCN efferents.  

The first injection was located in the mSCN, but extended dorsally to the ventral aspect 

of AM (Fig. 9C).  The second injection was localized specifically to AM (Fig. 9D), 

while the third was also located in AM, but extended rostrally into the preoptic area 

(POA; Fig. 9E).  The efferents identified as a result of these injections are noted in Table 

4.     

Two CTB injections were identified within the borders of the mSCN.  The first 

extended laterally into the preoptic area and ventrally into the optic chiasm (CO) with a 

small amount of leakage into the third ventricle (Fig. 9F).  The second was relatively 

well-contained, with only a small amount of leakage into the third ventricle (Fig. 9G).   
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TABLE 4. Efferent connections of the avian and mammalian suprachiasmatic nuclei 
Misplaced injections near mSCN Misplaced injections near vSCN 

Structures 
Chick 
mSCN 

Chick 
vSCN 

Corresponding 
Mammalian 

SCN Efferent mSCN/AM AM AM/POA TrO DSV 
Dorsal to 

vSCN 
Telencephalon          

SL + - SL#*§ ++ + +  - - 
nBST + - BST#* ++ + +  - - 
          

Diencephalon          
Preoptic area + + POA#*§ ++ +++ +++  - - 
          
Hypothalamus          

AM ++ + AHA§ +++ injected injected  - - 
LHy + + LHA§ ++ +++ +++  + - 
mSCN injected ++  - ++ ++  - + 
mSCN, contra + -  + + -  - - 
VLPO - ++ VLPO#* - - -  - ++ 
VMN ++ - VMH#*§ +++ +++ +++  - - 
VMN, contra + -  - - -  - - 
vSCN + injected  + + + @ + +++ 
vSCN, contra + ++  + - -  - + 
AL - ++  - - -  - - 
IH ++ - ++ + ++  - - 
IN ++ - TM§ ++ ++ +  - - 
DMN ++ - DMH#*§π ++ ++ ++  - - 
MM + -  + + +  - - 
PVN +++ - PVN#*§π +++ +++ ++  - - 

          
Thalamus          

VLT - ++  ++ ++ +  + ++ 
LA - +  + + +  - + 
GLv - ++  + + + @ + + 
GLv, contra - +  - - -  - - 
ICT - +++  + - -  + ++ 
DLAmc - +++  ++ + +  + ++ 
DLAl - +++  + + +  + ++ 
DLAm - +++  + - -  - ++ 
DLAlr - +++  - - -  - + 
DLP - +++  - - -  - + 
PVT +++ - PVT#*§ +++ ++ ++  - - 
nCPa + -  + + -  - - 
OV - +  - - -  - + 
GLd - +  - - - @ - + 

          
Pretectum          

pRot + ++ IGL#* + + +  - + 
SP - +  - - -  - + 
PPC - ++  - - -  + + 
AP + +++  + + ++  - + 
LMmc - +++  - - -  + ++ 
LMpc - +++  - - - @ + ++ 

          
Habenula ++ - Habenula§ +++ +++ +++  - - 

          
Mesencephalon          

SGP + +  + + +  + + 
SAC + +  + + +  + + 
SGC - +  - - -  + + 
SGFS - +  - - - @ - - 
GCt + + PAG#* ++ ++ ++  + + 
nBor - +  - - - @ + + 
PPT - +  - - -  ++ ++ 
AVT - +  + + +  ++ ++ 
Ru - +  - - -  + + 
EW - +  - - -  - - 

          
Rhombencephalon          

Pap - ++  - - -  ++ ++ 
          

Strength of BDA signal in terminal fibers: +++, strong; ++, moderate; +, sparse.  Misplaced injections are described in the Results section.  Structures labeled by the BDA 
injection to TrO are indicated simply (@) and represent a subset of the retinal projections delineated in Table 3.  For chick structure abbreviations, see list.  Corresponding 
mammalian structure abbreviations: AHA, anterior hypothalamic area; BST, bed nucleus of the stria terminalis; DMH, dorsomedial hypothalamic nucleus; IGL, 
intergeniculate leaflet; LHA, lateral hypothalamic area; POA, preoptic area; PAG, periaqueductal gray; PVN, hypothalamic paraventricular nucleus; PVT, thalamic 
paraventricular nucleus; SL, lateral septal nucleus; TM, tuberomamillary hypothalamus; VLPO, ventrolateral preoptic nucleus; VMH, hypothalamic ventromedial nucleus.  
Species and reference of mammalian structures: #, rat, Leak and Moore, 2001; *, hamster, Kriegsfeld et al., 2004; §, mouse, Abrahamson and Moore, 2001; π, human, Dai et 
al., 1998. 
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TABLE 5. Afferent connections of the avian and mammalian suprachiasmatic nuclei 

Misplaced injections near mSCN Misplaced injections near vSCN 

Structures 
Chick 
mSCN 

Chick 
vSCN 

Corresponding 
Mammalian 

SCN Afferent 
AM/ 

mSCN POA/CO 3V 
dorsal 

vSCN/WM ICT 
GLv/ 
vSCN 

Medial 
GLv 

Telencephalon           
HA - +++  ++ - ++ ++ + ++ ++ 
Hp + - H* ++ + ++ + - + - 
APH + ++  ++ - - + - + - 
SL ++ - SL#* ++ - ++ + - - - 
nBST +++ -  + + ++ - - - - 
Tn ++ -  - - - - - - - 
           

Diencephalon           
Preoptic Area +++ - POA#* ++ +++ +++ + - - - 
           
Hypothalamus          - 

AM ++ + AHA#* injected - + + + + - 
AM, contra - +  + - - - - - - 
LHy ++ +  ++ - + + - + - 
mSCN injected +  ++ ++ ++ + - + - 
mSCN, contra + -  ++ - ++ - - - - 
VLPO ++ ++  + - + ++ - - - 
VMN ++ ++ VMH#* +++ + + + + + - 
vSCN + injected  + - - ++ ++ + - 
vSCN, contra - ++  - - - + - + - 
AL - ++  - - - ++ + + + 
IH ++ ++  +++ ++ ++ ++ - + - 
IN ++ - Arc# ++ ++ ++ - - - - 
DMN ++ -  + + ++ - - - - 
MM ++ -  + + ++ - - - - 
ME ++ -  - - ++ - - - - 
PVN ++ + PVN* + + +++ + + + - 

           
Thalamus           

VLT + ++  + - - ++ ++ + + 
LA + +++  + - + + + ++ - 
LA, contra - ++  - - - + - + - 
GLv - +++ vLGN* + - - +++ ++ injected injected 
GLv, contra - ++  - - - + + ++ + 
ICT - ++  - - - + injected - + 
DLAmc - ++  + - - ++ + + + 
DLAl - ++  + - - + - ++ + 
DLAm - ++  + - - - - + + 
PVT +++ ++ PVT#* + + +++ ++ - + - 
PVT, contra +++ -  - - - + - - - 
nCPa ++ ++  + - +++ + + + - 
T - ++  - - - + - - - 
GLd - ++  - - - + + - - 

           
Pretectum   Pretectal nuclei#        

pRot - ++ IGL# ++ - - + - + + 
PPC - ++  - - - ++ ++ +++ + 
AP - ++  - - - + + +++ - 
PD - ++  - - - + - + - 
LMmc - +++  - - - ++ +++ +++ ++ 
LMpc - +++  - - - ++ +++ + ++ 

           
Habenula +++ -  + + + - - - - 

           
Mesencephalon           

SGP + ++  ++ - - ++ + - - 
SAC + +  ++ - - ++ + + - 
SGC - +++  - - - + ++ - - 
SGFS - ++ Superficial SC# - - - + + - + 
GT - +++  - - - ++ + + + 
GCt ++ ++ PAG# ++ - - ++ + + - 
GCt, contra - +  - - - + - - - 
LoC - + LoC#* + - - + + ++ - 
SCE - +  ++ - - + + + - 
nBor - +  - - - + - - - 
AVT ++ - VTN* - - - + - - - 

Rhombencephalon           
Pap - +++  - - - + + + + 
OM - +  + - - ++ ++ ++ + 
           

Strength of CTB signal: +++, strong; ++, moderate; +, sparse.  Misplaced injections are described in the Results section.  For chick structure abbreviations, see list.  
Corresponding mammalian structure abbreviations: AHA, anterior hypothalamic area; Arc, arcuate nucleus; H, hippocaumpus; IGL, intergeniculate leaflet; LoC, locus 
coeruleus; POA, preoptic area; PAG, periaqueductal gray; PVN, hypothalamic paraventricular nucleus; PVT, thalamic paraventricular nucleus; SC, superior colliculus; SL, 
lateral septal nucleus; vLGN, ventral lateral geniculate nucleus; VMH, hypothalamic ventromedial nucleus; VTN, ventral tegmental nucleus.  Other abbreviation:  WM, 
white matter, defined in the results section.  Species and reference of mammalian structures: #, rat, Moga and Moore, 1997; *, hamster, Pickard, 1982. 
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The resulting afferent projections to the mSCN are listed in Table 5.  Of the seventeen 

remaining injections, five were discarded due to large scale leakage of tracer into the 

pipette track, two were discarded because tracer delivery was not apparent, likely due to 

a clogged micropipette tip, and one was discarded because the micropipette was 

deflected to a distal region, the afferents of which are significantly different than those 

resulting from the mSCN injections.  The final eight injections were sorted into three 

groups—one very large injection encompassing most of AM and the dorsal aspect of 

mSCN (Fig. 9H), three injections to POA with impingement on CO (Fig. 9I) and four 

injections that delivered tracer to the third ventricle (3V; Fig. 9J) were used to evaluate 

our reported mSCN afferents and are included in Table 5.  One injection to CO was 

analyzed and it was found that no cellular staining resulted; therefore, we did not include 

this injection in Table 5. 

Three BDA injections were limited to the borders of the vSCN (Fig. 9K-M).  

One of these injections was situated dorsally compared to the other two (Fig. 9L) and 

one impinged slightly on DSV (Fig. 9M), but there were no significant differences in 

their efferent projections, which are reported in Table 4.  Of the remaining nine 

injections, two were discarded due to lack of tracer delivery, while four injections were 

misplaced into either white matter tracts or distal areas bearing no efferent projection 

similarity to the three vSCN injections.  Three injections were of particular interest and 

were used in our assessment of vSCN efferents.  The first injection was located in the 

optic tract (TrO; Fig. 9N), while the other two were situated atop the vSCN dorsal 
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border, one in the ventral supraoptic decussation (DSV; Fig. 9O) and the other into gray 

matter dorsal and slightly lateral to vSCN, between GLv and DSV (Fig. 9P).     

Three CTB injections were identified within the borders of the vSCN.  One of 

these injections was very well confined within the nuclear border (Fig. 9Q).  The other 

two injections overflowed the border slightly into adjacent gray matter (Fig. 9R-S).  No 

significant differences were evident in their afferents, which are reported in Table 5.  Of 

the seventeen remaining injections, three were discarded due to tracer leakage into the 

track or deficient tracer delivery and four were discarded as the injection location was 

distal and the resulting afferent projections were significantly different than those found 

with vSCN injection.  The remaining injections were grouped into four categories.  One 

large injection included the dorsal vSCN, the gray matter dorsal to vSCN and four fiber 

tracts (white matter; WM):  the dorsal supraoptic decussation (DSD), DSV, the medial 

forebrain bundle and the quinto-frontal tract (Fig. 9T).  A second injection was located 

further dorsal in the intercalated nucleus (ICT; Fig. 9U).  Two CTB injection sites 

encompassed the vSCN and impinged upon the medial aspect of GLv (Fig. 9V).  Four 

injections were located within GLv (Fig. 9W), two of which extended slightly into the 

ventrolateral thalamic nucleus (VLT).  The final two injections were located within TrO.  

No afferent cells were identified as a result of these injections and they are therefore not 

included with the reported injections of interest in Table 5.   

Most labeling from both BDA and CTB iontophoretic injections was ipsilateral.  

Therefore, unless specifically identified as contralateral, all structures described are 

ipsilateral to the injection site. 
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Fig. 12. Maps of mSCN efferents and afferents throughout the rostrocaudal extent of the 
brain following BDA and CTB iontophoretic injections, respectively.  Structures of 
interest are labeled on the left hemisphere of the brains in the left panel.  Fibers in 
mSCN efferents are indicated on the right hemispheres of the left panel by short lines.  
No distinction is made between terminal fibers and fibers of passage.  A summary of 
terminal efferents is available in Table 4.  Afferents are indicated on the right panel by 
dark circles representing cells and are summarized in Table 5.  The distribution of fibers 
and cells on these maps represent the relative strength of staining in these areas, but do 
not reflect measured values.  For abbreviations, see list. 
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Fig. 12 Continued
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Fig. 12 Continued 
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Fig. 12 Continued 
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Fig. 12 Continued 
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Fig. 12 Continued 
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Fig. 12 Continued 
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Fig. 13. Representative photomicrographs of mSCN afferents and efferents.  A-G: 
Labeled afferents following CTB iontophoretic injections to the mSCN.  Note the label 
in the vSCN (C) and MM (G).  H-M: mSCN efferents following BDA iontophoretic 
injections.  Note the presence of terminals in both the ipsilateral (O,P) and contralateral 
(N) vSCN.  For abbreviations, see list.  Scale bar = 1 mm in J; 400 µm in A-H,K-M,O; 
200 µm in I,N,P. 
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Fig. 14. Maps of vSCN efferents and afferents throughout the rostrocaudal extent of the 
brain following BDA and CTB iontophoretic injections, respectively.  Structures of 
interest are labeled on the left hemisphere of the brains in the left panel.  Fibers in vSCN 
efferents are indicated on the right hemispheres of the left panel by short lines.  No 
distinction is made between terminal fibers and fibers of passage.  A summary of 
terminal efferents is available in Table 4.  Afferents are indicated on the right panel by 
dark circles representing cells and are summarized in Table 5.  The distribution of fibers 
and cells on these maps represent the relative strength of staining in these areas, but do 
not reflect measured values.  For abbreviations, see list. 
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Fig. 14 Continued 
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Fig. 14 Continued 
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Fig. 14 Continued 
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Fig. 15. Representative photomicrographs of vSCN afferents and efferents. A-H: 
Labeled afferents following CTB iontophoretic injections to the vSCN. Note the label in 
the contralateral vSCN (F) and mSCN (H).  I-N: vSCN efferents following BDA 
iontophoretic injections.  Note the presence of terminals in the mSCN (J). For 
abbreviations, wee list.  Scale bar = 1 mm in C,E,L,M; 400 µm in A,B,F-H,K; 200 µm in 
D,H inset,I,J.N. 
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Efferent connections 

 The mSCN and vSCN efferents in which terminal fibers were identified are 

summarized in Table 4.  Maps of mSCN efferents are shown in the right hemispheres of 

the left-hand panels of Figure 12, and representative photomicrographs are compiled in 

Figure 13.  Efferents from the vSCN are mapped in Figure 14 left panels and 

representative photomicrographs are shown in Figure 15.    

We found mSCN efferent terminal fibers primarily in structures along the 

midline of the chick brain.  Fibers terminate in the lateral septal nucleus (SL; Fig. 12A-

E) and the bed nucleus of the stria terminalis (nBST; Fig. 12A-E) of the telencephalon.  

In the diencephalon, terminal fibers are found in the preoptic area (POA), including the 

medial preoptic nucleus (POM; Fig. 12A), preoptic periventricular nucleus (POP; Fig. 

12B), dorsolateral preoptic nucleus (POD; Fig. 12A) and ventral supraoptic nucleus 

(SOv; Fig. 12A).  Hypothalamic efferents include AM (Figs. 12B-F, 13K), the lateral 

hypothalamic area (LHy; Figs. 12E-L; 13K) and the ventromedial nucleus (VMN; Fig. 

12G-K).  The contralateral mSCN receives input, as does the ipsilateral (Figs. 12F,G, 

13O,P) and contralateral (Fig. 13N) visual suprachiasmatic nucleus (vSCN).  In the 

tuberal hypothalamus, efferent fibers terminate in the hypothalamic inferior nucleus (IH) 

(Figs. 12L-N, 13M), the infundibular nucleus (IN; Figs. 12L-N, 13M), dorsomedial 

nucleus (DMN; Fig. 12L) and the medial mammillary nucleus (MM; Fig. 12O).  Finally, 

strong signal is present in the hypothalamic paraventricular nucleus (PVN; Fig. 12D-I), 

from which fibers of passage oriented toward the thalamic paraventricular nucleus (PVT; 

Figs. 12D-K, 13L) originate.  PVT is labeled and fibers of passage in the dorsal portion 
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of PVT are directed toward nBST of the telencephalon.  The habenular region is stained 

with terminal fibers (Figs. 12G-M, 13J).  A few structures associated with the visual 

system are labeled, including the perirotundal area (pRot; Fig. 12H-K) and the pretectal 

area (AP; Fig. 12N).  The periventricular gray layer (SGP; Fig. 12N-T) and the central 

album layer (SAC; Fig. 12N-P) of the optic tectum contain labeled fibers.  Finally, 

terminal fibers are located in the bed nucleus of the pallial commissure (nCPa; Fig. 12B-

D) and the central gray (GCt; Fig. 12N-Q).   

Efferent projections identified by the mSCN/AM injection included all of the 

efferents identified by mSCN injection alone.  Many of these projections were more 

abundant from this more dorsal injection site, particularly efferents to SL, nBST and the 

habenula.  In addition to these projections, mSCN/AM injection identified efferents in 

several thalamic structures as well as the ventral tegmental area (AVT).  These 

additional efferents were also identified by AM injection alone and by the AM/POA 

injection. 

 Efferents from the vSCN are generally found more laterally in the chick brain.  In 

POA of the diencephalon, terminals are found in SOv and POM (Fig. 14A).  Many 

structures receiving efferents from the vSCN are in the hypothalamus, including AM 

(Fig. 14B-E), anterior LHy (Fig. 14E), mSCN (Figs. 14B,C, 15J), VLPO (Figs. 14B,C, 

15N), ansa lenticularis (AL; Fig. 14F-J) and the contralateral vSCN.  Fibers of passage 

in DSD and the ventral supraoptic decussation (DSV; Fig. 14F-I) are apparent.  Many 

structures associated with visual function receive efferents from the vSCN.  In the 

thalamus, VLT (Figs. 14B-E, 15K), LA (Figs. 14B-E, 15K), the dorsal border of GLv 
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(Fig. 14E-L), the intercalated nucleus (ICT; Fig. 14F,G), dorsolateral anterior nucleus 

magnocellular part (DLAmc; Fig. 14E), lateral part (DLAl; Fig. 14F-H), medial part 

(DLAm; Fig. 12F-H) and rostrolateral part (DLAlr; Fig. 14E-G), the dorsolateral 

posterior nucleus (DLP; Fig. 14I) and the dorsal border of the dorsolateral geniculate 

nucleus (GLd; Fig. 14I-M), contain terminal fibers.  In the pretectum, efferent terminals 

are in pRot (Fig. 14F-I), the subpretectal nucleus (SP; Fig. 14M,N), principal 

precommissural nucleus (PPC; Fig. 14H-K), pretectal nucleus (PT; Fig. 14M), AP (Figs. 

14M, 15M), LMmc (Fig. 14H-K) and LMpc (Fig. 14I-K).  In the mesencephalon, 

terminal fibers are found in the optic tectum (Fig. 14L-T)—SGP and SAC (Fig. 15L), 

the central gray layer (SGC) and superficial fiber and gray layer (SGFS) all contain 

terminal fields.  SGP and SAC fibers are primarily ventral, although sparser staining is 

present dorsally.  In the SGC and SGFS, fibers are localized only to the ventral portion 

of the optic tectum.  Nucleus ovoidalis (OV; Fig. 14I), GCt (Fig. 14M-S), the nucleus of 

the basal optic root (nBOR, Fig. 14M-Q), the pedunculopontine tegmental nucleus (PPT; 

Fig. 14P,Q), AVT (Fig. 14Q), the red nucleus (Ru; Fig. 14O-Q) and the medial nucleus 

of Edinger-Westphal (EWm; Figs. 14Q,R, 15I), as well as the papillioform nucleus (Pap; 

Fig. 14R-T) of the rhombencephalon receive efferent projections. 

 The misplaced injection to TrO labeled a limited subset of retinorecipient 

regions, as is delineated in Table 4.  Two injections dorsal to vSCN were analyzed.  

Injection to DSV resulted in efferent projections that are similar to vSCN efferents, but 

are much less abundant.  Injection to the gray matter just dorsal to the vSCN identified, 
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again, a similar set of efferent projections that were generally less abundantly labeled, 

while strongly labeling the vSCN itself. 

 

Afferent connections 

 Afferents of the mSCN and vSCN are summarized in Table 5.  Maps of mSCN 

afferents are shown in the right-hand panels of Figure 12, and representative 

photomicrographs are displayed in Figure 13.  Afferents from the vSCN are mapped in 

Figure 14 right panels and representative photomicrographs are shown in Figure 15.    

 Telencephalic afferents to the mSCN include the hippocampus (Hp; Figs. 12A, 

13I), parahippocampal area (APH; Fig. 13H), nucleus taeniae (Tn; Figs. 12F-I, 13E), SL 

(Fig. 12A-E) and nBST (Fig. 12A-E).  In the diencephalon, POA afferents include MPO, 

SOv and POD (Fig. 12A) and POP (Fig. 12B).  In the hypothalamus, AM (Fig. 12B-F), 

PVN (Fig. 12D-L), the contralateral mSCN, VLPO (Figs. 12B,C, 13F), LHy (Fig. 12C-

K), VMN (Figs. 12G-K, 13B) and the anterior vSCN (Figs. 12F, 13C) are also labeled.  

In the tuberal hypothalamus, IH (Figs. 12L-N, 13A), IN (Figs. 12L-N, 13A), DMN (Fig. 

12L), MM (Figs. 12O, 13G) and the median eminence (ME; Figs. 12L-P, 13A) contain 

afferent cells.  In the thalamus, cells are seen in LA (Fig. 12B-E), VLT (Fig. 12B-E), 

nCPa (Fig. 12B-D) and PVT (Figs. 12D-I, 13D).  The habenular region is also afferent to 

the vSCN (Fig. 12G-L).  In the mesencephalon, SGP (Fig. 12N,O) and SAC (Fig. 12O-

S) of the optic tectum are labeled.  Finally, afferent cells are found in GCt (Fig. 12N-T) 

and AVT (Fig. 12R). 
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 A large, misplaced injection that encompassed AM and the dorsal portion of 

mSCN identified a set of afferents similar to that of mSCN.  In some cases, afferents 

were more abundant after mSCN injection, in others, they were more abundant after 

AM/mSCN injection.  This is different from the situation with efferents, where we found 

that mSCN/AM injection resulted in generally more abundant projections than mSCN 

only.  Additional afferents identified after AM/mSCN injection presumably originate 

from AM itself; however, no injection to AM was limited within that nucleus only.  

POA/CO injection resulted in a limited subset of stained afferents, which are also 

afferent to mSCN, in addition to mSCN itself.  In general, these afferents were less 

abundant from POA/CO.  Delivery of the entire volume of CTB to the third ventricle 

labeled a set of cell bodies similar to the afferents that project to mSCN; however, the 

appearance of this staining was markedly different from cellular stain resulting from 

CTB injection to the mSCN.  In the case of transport from the mSCN, labeled fibers 

associated with the projecting cell bodies were oriented dorsoventrally and were 

relatively light in their appearance.  In contrast, cell bodies stained by uptake of CTB 

from the third ventricle were more closely associated with the cavity than were those 

labeled by transport from mSCN injections.  Further, the processes associated with these 

cells were very dark and were oriented mediolaterally, extending from the ependymal 

border of the third ventricle to the closely apposed cell bodies.  Staining of cell bodies in 

more distal regions such as Hp, nBSTL, SL an the visual Wulst (HA) is presumably a 

result of transport of CTB within the cerebrospinal fluid, which contacts all structures 

identified. 
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 Telencephalic structures afferent to the vSCN include HA (Figs. 14A, 15B) and 

APH (Fig. 15A).  The hypothalamic AM (Fig. 14B-E), rostral LHy (Fig. 14E-H), mSCN 

(Figs. 14B,C, 15H), rostral and caudal, but not middle PVN (Figs. 14D,E,J-N, 15D) and 

VMN (Fig. 14F-J) contain afferent cells.  Label is also found in VLPO (Fig. 14C,D), AL 

(Fig. 14F-K), contralateral vSCN (Fig. 15F) and IH (Fig. 14K,L).  Afferents in the 

thalamus include LA (Fig. 14C-E), the dorsal border of GLv (Fig. 14E-L), nCPa (Fig. 

14B-D), VLT (Fig. 14D,E), ICT (Fig. 14F,G), PVT (Fig. 14E-H), DLAmc (Fig. 14E), 

DLAl (Fig. 14F-H), DLAm (Fig. 14F-H), GLd (Fig. 14I-M) and T (Fig. 14H,I).  In the 

pretectum, afferent cells are found in pRot (Figs. 14G-J, 15E), PPC (Figs. 14H-K, 15E), 

PD (Fig. 14L), PT (Fig. 14M), AP (Fig. 14M), LMmc (Figs. 14H-K, 15E) and LMpc 

(Figs. 14I-K, 15E).  In the mesencephalon, all four layers of the optic tectum are afferent 

(Fig. 14L-T).  Cells are denser in the ventral region of the tectum, with sparser staining 

in the dorsal regions.  SGFS cells are found only it its ventral aspect.  Afferent cells are 

found in the tectal gray (GT; Figs. 14L,M, 15G), GCt (Figs. 14M-S, 15C), locus 

coeruleus (LoC; Fig. 14S), the external cellular layer (SCE; Fig. 14L-N), nBOR (Fig. 

14M-Q), Pap (Fig. 14R-T) and the oculomotor tract (OM; Fig. 14N). 

 The misplaced injection to the dorsal vSCN/WM resulted in labeling of a very 

similar set of afferents as the vSCN injection itself, and they were either of comparable 

abundance or were less abundant.  Injection to ICT labeled a much more limited set of 

afferents, all of which we identified as vSCN afferents, and are, in general, less abundant 

than those of the vSCN.  Afferents labeled from the medial GLv and lateral vSCN are  
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Fig. 16. Retinal ganglion cell (RGC) label following CTB injection to the vSCN. A: A 
distribution map of RGCs involved in the retinohypothalamic tract (RHT).  CTB was 
iontophoresed into the vSCN and allowed to trace back to the retina.  RGCs projecting to 
the vSCN are present only in the dorsal retina.  B: Photomicrographs of representative 
RGCs, which have a variety of morphologies.  Chick RGCs have not been characterized 
by function.  Abbreviations: D, dorsal; V, ventral; N, nasal; T, temporal.  Scale bars in B 
= 100 µm. 
 
 

also similar, but less abundant, than vSCN afferents.  Finally, very few afferents were 

identified after injection to the medial GLv. 

 The retinae from CTB-injected birds were examined for retinal ganglion cells 

(RGCs).  Afferent RGCs were identified in the retinae contralateral to the vSCN 

injections and were used to create a distribution map (Fig. 16A) and photomicrographs 

of representative RGCs (Fig. 16B).  RGCs are located throughout the dorsal portion of 

the retina.  The distribution appears as a dense band with a sparse region of cells 

surrounding it.  The cells are more dense centrally and less dense around the periphery 

of the dorsal retina.  The cells are smaller toward the central region of the distribution, 

with slightly larger cells in the periphery.  No RGCs were found in the retinae of mSCN- 

or mSCN/AM-injected birds. 
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DISCUSSION 

 Similarities to the mammalian SCN exist within both the mSCN and the vSCN.  

Data from the work presented here and previous studies, taken as a whole, indicate that 

both the mSCN and vSCN are involved in the avian circadian system.  We propose 

below a new working model of the avian suprachiasmatic nucleus based on these 

observations. 

 

Retinal projections 

 The data presented here indicate that the vSCN receives completely contralateral 

retinohypothalamic input.  Following iontophoretic injections of CTB to the vSCN, 

numerous RGCs are labeled in the contralateral retina only.  The finding that this retinal 

input derives from RGCs in the dorsal retina differs significantly from what has been 

found in the hamster, which sends a retinohypothalamic projection from RGCs that are 

distributed evenly throughout the retina (Pickard, 1982).  The dorsal distribution of 

retinohypothalamic RGCs in chick, however, may be expected, since the dorsal region of 

the chick retina contains a denser population of RGCs than does the ventral aspect (Chen 

and Naito, 1999).  As has been reported previously (see Table 3), sparse retinal input to 

the mSCN was also observed; however, the paucity of labeled terminal fibers in this 

structure and the absence of CTB-labeled RGCs in the retinae of mSCN-injected birds 

indicate that the vSCN is the primary retinorecipient structure in the chick 

hypothalamus.   
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 Interestingly, a classical study, employing autoradiographic techniques, reported 

abundant retinopetal cells present throughout the suprachiasmatic region of the pigeon 

and the jackdaw, Corvus monedula, including both the vSCN and the mSCN (Meier, 

1973).  In our study, cells were retrogradely labeled in the vSCN alone.  These cells 

were clearly visible after two days of CTB transport but were generally obscured by the 

retinal terminal field after five days of transport.  We attempted to confirm an efferent 

from the vSCN to the retina by viewing retinae from chicks in which BDA was injected 

into the vSCN but, because of the pigmentation in the retina, background was too high 

under dark field microscopy to identify BDA immunoreactive fibers.  The data 

nevertheless suggest a putative modulatory role for the vSCN on the retina.      

 Retinal terminals identified in other structures have been reported previously 

(Table 3).  Because they are outside the scope of this study and have already been 

described, we will not discuss them.  We did, however, identify a previously unreported 

contralateral retinal projection that is of particular interest.  This structure is in the same 

frontal plane as, and is lateral to, the rostral mSCN.  This region contains γ-aminobutyric 

acid (GABA) immunoreactive cells with fibers visible at the dorsal margin (EL Cantwell 

and VM Cassone, unpublished data).  The mammalian VLPO is retinorecipient (Lu et 

al., 1999) and one of its primary antigens is GABA (Sherin et al., 1998); therefore, we 

believe this structure may be homologous to the mammalian VLPO, which has been 

implicated in regulation of sleep:wake cycles in mammals (Lu et al., 1999).   
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Fig. 17. These schematic diagrams in the sagittal plane summarize what is known about 
the efferent and afferent connections of the chick (A) and rodents (B).  The thickness of 
the lines represents the relative density of each projection.  A: These drawings represent 
the connections of the vSCN (purple) and mSCN (blue).  TeO layers: 1, SGP; 2, SAC; 3, 
SGC; 4, SGFS.  Due to space constrictions, structures of TeF, ThF, AO and HTh were 
grouped together.  These structures are considered individually in Tables 2 and 3.  For 
chick structure abbreviations, see list.  B: Summary of projections from the core (blue) 
and shell (red) of the mammalian suprachiasmatic nucleus (SCN).  Mammalian structure 
abbreviations: BST, bed nucleus of the stria terminalis; DMH, dorsomedial 
hypothalamic nucleus; IGL, intergeniculate leaflet; PAG, periaqueductal gray; POA, 
preoptic area; PVN, hypothalamic paraventricular nucleus; PVT, thalamic 
paraventricular nucleus; SC, superior colliculus; SL, lateral septal nucleus; SPVZ, 
subparaventricular zone; Teg, tegmentum; VLPO, ventrolateral preoptic nucleus; VTU, 
ventral tuberal hypothalamus; ZI, zona incerta. 
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Efferents of the suprachiasmatic nuclei 

 With the exception of one investigation into human hypothalamic efferents of the 

SCN (Dai et al., 1998), studies investigating efferent connectivity of the SCN have 

focused on three rodents—rat, hamster and mouse (Stephan et al., 1981; Watts and 

Swanson, 1987; Watts et al., 1987; Kalsbeek et al., 1993; Morin et al., 1994; 

Abrahamson and Moore, 2001; Leak and Moore, 2001; Kriegsfeld et al., 2004).  In a few 

of these studies, efferents from the core and the shell regions have been divided in order 

to compare the two subdivisions of the nucleus.  This division of mammalian SCN 

efferents may be seen in Figure 17B.  In the present study, mSCN and vSCN projections 

are predominantly ipsilateral, as is the case in all mammals studied, and they are 

summarized in Figure 17A.   

 The mSCN and the rodent SCN exhibit several common efferents.  Of particular 

interest are the projections to SL and nBST: the mammalian SCN also sends efferents to 

nBST and SL of the basal forebrain.  These efferents are interesting because they are 

closely apposed to the lateral septal organ (LSO) in the chick.  Previous studies have 

suggested that encephalic photoreceptors are located in LSO (Vigh-Teichmann et al., 

1980; Silver et al., 1988; Kuenzel, 1993; Li et al., 2004; Rathinam and Kuenzel, 2005).  

The current data indicate a possible means of interaction between the mSCN and these 

putative encephalic photoreceptors.  The vSCN makes fewer connections that are 

comparable to rodent SCN efferents.  Most notable is a connection to VLPO, which 

receives projections from the SCN in the hamster (Kriegsfeld et al., 2004) and the rat 
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(Chou et al., 2002).  Several mammalian SCN efferents are comparable to structures 

efferent from both the mSCN and vSCN in the chick, as is delineated in Table 4. 

 The total number of structures efferent from the mSCN and vSCN combined 

exceeds the number of known mammalian SCN efferents.  One vSCN efferent reported 

here, EWm has been well characterized in the pigeon (Gamlin et al., 1982).  Because our 

BDA-labeled efferents were significantly more sparse than those previously identified, 

we referred to CTB-labeled fibers from vSCN injected birds and observed a much more 

abundant efferent connection, presumably due to the larger CTB injection sites.  EWm 

has been shown to regulate choroidal blood flow in the eye via parasympathetic circuits 

involving the ciliary ganglion (Fitzgerald et al., 1990; Reiner et al., 1990).  A few 

efferent connections are made by the mSCN to tectofugal pathway structures; however, 

the vSCN exhibits a high degree of connectivity with visual structures of the tectofugal, 

thalamofugal and accessory optic pathways.  Previous studies have indicated a role for 

the circadian system in the regulation of the visual system.  In pigeons, parameters of 

both visually evoked potentials in the optic tectum and electroretinograms are rhythmic 

in both a 12:12 light:dark cycle (LD) and in constant darkness (DD; Wu et al., 2000).  

The distribution of vSCN efferents in the optic tectum, homologous to the mammalian 

superior colliculus, is particularly interesting because SGFS fibers are located on its 

ventral aspect (Fig. 14).  Electroretinogram parameters are also rhythmic in LD and DD 

in chicks (McGoogan and Cassone, 1999).  Although the avian retina clearly contains 

the machinery for endogenous oscillation (Bailey et al., 2004), it is intriguing to 

speculate modulation of retinal function directly via vSCN efferents (Fig. 11E). The 
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scope of efferent connectivity from the vSCN to visual system structures strongly 

supports the view that it is involved in circadian visual regulation in the retina, in 

retinorecipient structures and in integrative structures associated with visual processing. 

 

Afferents of the suprachiasmatic nuclei 

 Few studies have mapped the afferents of the mammalian SCN (Pickard, 1982; 

Morin at al, 1994; Moga and Moore, 1997).  Table 5 provides a list of structures afferent 

to the mammalian SCN that correspond to structures identified in the chick.  As was 

found with efferents, afferent structures to the mSCN and vSCN are more numerous than 

is the case in the mammalian SCN.  Figure 17 provides a schematic representation of 

rodent and chicken afferents. 

 The reception of afferents from SL completes a circuit between that structure and 

mSCN.  Input to the mSCN from SL is corroborated by a study of efferents traced from 

that structure (Montagnese et al., 2004).  A similar bidirectional interaction with SL 

exists in rats (Moga and Moore, 1997; Leak and Moore, 2001).  While nBST is not an 

afferent structure of the rodent SCN, its afferent input to the chick mSCN supports the 

hypothesis that encephalic photoreceptors of the LSO project indirectly to the mSCN. 

The mSCN also receives afferent input from hypothalamic structures apposed to the 

periventricular organ (PVO), another putative encephalic photoreceptive structure (cf. 

Silver et al., 1988), suggesting another putative pathway by which light information may 

reach the avian suprachiasmatic nucleus.   
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 As is the case in the mammalian SCN, the primary afferent to the vSCN is the 

retina.  In mammals, some light information is carried to the SCN from the lateral 

geniculate nucleus via the geniculohypothalamic tract (Card and Moore, 1982, 1989; 

Moore et al., 1984; Harrington et al., 1985; Moore and Speh, 1993; Moore and Card, 

1994).  Our data suggest a similar relationship between the geniculate nuclei and the 

vSCN.  Further, the nuclei of the pretectal area project to the rat SCN (Mikkelsen and 

Vrang, 1994), while, in the chick, many pretectal and visually active thalamic structures 

project to the vSCN, indicating an abundant afferent input to the vSCN by structures of 

the tectofugal, thalamofugal and accessory optic pathways.  A few structures associated 

with the tectofugal and thalamofugal pathways also project to the mSCN, suggesting a 

minor modulatory role in its function. 

 Taken together, mSCN and vSCN afferents are very similar to the afferents of 

the mammalian SCN.  As is seen with the core and shell of the mammalian SCN, there is 

significant overlap between the connections of the two avian structures.   

  

Connections between mSCN and vSCN 

 We found that the mSCN and vSCN communicate bidirectionally and bilaterally.  

Projections from the vSCN to the mSCN are stronger than they are in the converse.  In 

rodents, the core of the SCN communicates with the shell, but the shell doesn’t send 

efferents to the core (Abrahamson and Moore, 2001).  Thus, although the details of the 

relationship between putative sub-regions of the avian suprachiasmatic nucleus are 

different than the situation in the mammalian circadian system, the general scheme 
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suggests an asymmetric flow of retinal information from the vSCN to the mSCN. This 

scheme is generally similar to the relationship of the “core” and “shell” of the rodent 

SCN.  

 

Evaluation of projections based on misplaced injections 

 Assessment of efferent connections was made possible by several injections.  In 

the region dorsal to the mSCN, we found that AM has several common efferents with 

mSCN.  An injection that encompassed the dorsal mSCN and the ventral aspect of AM 

identified an efferent population that is an amalgam of the two structures’ efferents.  

Interestingly, several of the efferents common to the mSCN and mSCN/AM are more 

abundant when traced from the more dorsal injection site, most notably SL, nBSTL and 

the habenula.  There are several possible explanations.  First, more abundant projections 

may arise from the dorsal mSCN.  Second, the presence of BDA in two structures with 

common targets may have had an additive effect.  Finally, AM may be involved in 

multisynaptic pathways originating in or involving the mSCN.  The fact that ventral 

mSCN injection labels AM supports the third hypothesis, although all three possibilities 

may be responsible for the greater abundance of stain in mSCN/AM injections.  In 

mammals, one structure involved in such pathways is the subparaventricular zone (SPZ), 

which is just dorsal to the SCN.   The mammalian SCN sends a considerable efferent 

projection to the SPZ, which then sends efferents to a variety of downstream structures.  

Thus, injection to SPZ often results in an efferent pattern similar to SCN, but with more 

abundant terminal fibers present in those structures (Watts et al., 1991).   The data 
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presented here imply that a similar, albeit less intense, relationship may exist between 

mSCN and the region immediately dorsal to mSCN, perhaps including AM.  This 

possibility is made all the more intriguing by the presence of sparse retinal terminals in 

and between the two structures.  By way of contrast, injection to the gray matter just 

dorsal to the vSCN does not produce any amplification of efferent abundance, although 

the structures receiving efferents from this injection are very similar to those obtained 

from vSCN injections.  This similarity of efferent staining is probably at least partially 

due to uptake by efferent fibers of the vSCN. 

 In studies of suprachiasmatic afferents, misplaced injections again serve an 

important role in the analysis of our results.  A large CTB injection that included the 

entirety of AM and the dorsal portion of mSCN transported to an afferent population 

very similar to what was found in the ventral mSCN injections.  None of the injections 

were delivered to AM only; however, based on efferent findings, one may reasonably 

suspect that the more lateral thalamic afferents are those of AM itself.  In contrast to 

what was found in the efferent study, some afferent projections are stronger when traced 

from mSCN alone and some stained more abundantly after injection to AM/mSCN.  

This suggests that, if AM is involved in mSCN-mediated communication with output 

structures, it is only involved in this capacity with a subset of structures and that it is 

more active in the conveyance of efferent messages than in the reception of afferent 

signals.  Because we may only speculate given the data here, studies designed to 

determine the precise relationship between AM and mSCN are necessary in the 

exploration of the suprachiasmatic nucleus of birds.   
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 Our missed injections were able to confirm a few efferent and afferent 

projections reported based on mSCN and vSCN injection.  First, injection of BDA into 

AM led to efferent staining in mSCN, supporting our finding that there are cells afferent 

to mSCN within that nucleus.  Second, injection of CTB into POA confirmed mSCN 

efferents to that structure.  Third, injection of CTB to ICT confirmed its reception of 

vSCN efferents.  Finally, CTB injections contained within GLv resulted in a large fiber 

plexus within vSCN.  While we did not choose to report efferent projections from CTB 

injections, opting to use BDA instead, no BDA injections were placed in the GLv, so we 

used the CTB injections for confirmation of a geniculohypothalamic tract to the vSCN 

(Fig. 9W).  Reciprocal injection to other efferents and afferents will be necessary to 

assess their full extent and validity. 

 

Functional comparisons of the mSCN and vSCN 

 Lesion studies support the involvement of the mSCN in expression of circadian 

locomotor rhythms.  Initial lesions of the anterior hypothalamus resulted in loss of 

locomotor activity rhythms in house sparrows (Takahashi and Menaker, 1982), Japanese 

quail (Simpson and Follett, 1981) and Java sparrows (Ebihara and Kawamura, 1981).  

These lesions comprised a large portion of the anterior hypothalamus, likely destroying 

both the mSCN and vSCN.  To resolve this issue, Ebihara et al. (1987) produced 

individual lesions to the vSCN and mSCN in pigeons; these lesions, by themselves, had 

little effect.  However, lesions of the mSCN in pigeons that had also received either 

pinealectomy or enucleation (each of which only disrupts rhythmicity) abolished or 
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further disrupted free running rhythms in constant dim light (dimLL).  Lesions of the 

vSCN failed to abolish free running rhythms in dimLL.  In contrast, Cassone et al. 

(1990) found that specific lesions in the vSCN abolished circadian patterns of 

norepinephrine turnover in the chick pineal gland, but that mSCN had no effect on this 

output. 

 Conversely, physiological analyses of rhythmic function points to the vSCN as a 

circadian oscillator.  The vSCN, but not the mSCN, of the house sparrow exhibits 

circadian rhythms of 2-deoxy[14C]glucose (2DG) uptake, such that 2DG uptake is high 

during the subjective day and low during the subjective night (Cassone, 1988; Lu and 

Cassone, 1993a). In the chick, 2DG uptake is rhythmic in constant darkness in both 

structures (Cantwell and Cassone, 2002), such that uptake is highest during subjective 

day. This phase of peak uptake is similar to the situation in the mammalian SCN 

(Schwartz et al. 1980). In Japanese quail, the vSCN exhibits rhythmic electrical activity 

in vitro (Juss et al., 1994), with activity greater during the subjective day, also similar to 

the situation for the mammalian SCN (Green and Gillette, 1982).  Finally, the early 

immediate gene c-fos, which is induced in the mammalian SCN by a one-hour light 

pulse during the night (Rea, 1989), is similarly induced in the vSCN, but not in the 

mSCN, of quail and starlings (King and Follett, 1997).   

  Of course, the role of an avian SCN must be integrally linked to the role of pineal 

melatonin in circadian organization (Cassone, 1998), and the vSCN fits this criterion 

rather well. First, exogenous melatonin administration during the day acutely inhibits 

2DG uptake in the vSCN, but not the mSCN, of sparrows (Cassone and Brooks, 1991) 
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and chickens (Cantwell and Cassone, 2002). This is similar to the situation in rodents 

(Cassone et al., 1988a). Secondly, pinealectomy of house sparrows not only abolishes 

circadian locomotor patterns but also abolishes the circadian rhythms of 2DG uptake in 

the vSCN (Lu and Cassone, 1993a).  Thirdly, rhythmic administration of melatonin to 

arrhythmic, pinealectomized sparrows restores both a rhythm of locomotion and a 

rhythm of 2DG uptake in the vSCN, but not the mSCN, such that 2DG uptake is lower 

during melatonin administration than during vehicle administration (Lu and Cassone, 

1993b). Finally, the vSCN of more than 20 species of birds express high density, high 

affinity binding of radiolabeled 2-[125I]-iodomelatonin (IMEL) (Rivkees et al., 1989; 

Stehle, 1990; Cassone and Brooks, 1991; Siuciak et al., 1991; Brooks and Cassone, 

1992; Cassone et al., 1995). The mSCN do not.  

 Recent advances in the molecular biology of circadian clocks have offered yet 

another avenue for the comparative study of the SCN.  In rodents, several transcription 

factors and kinases, labeled “clock genes”, are involved in a complex transcriptional-

translational feedback loop that is at the core of a model explaining the generation of 

biological rhythms (Reppert and Weaver, 2002).  Included in this loop are period genes 

(pers), cryptochromes (crys), clock, bmal1 and E4bp4, which have been identified within 

the mammalian SCN (cf. Hastings and Herzog, 2004).  Avian orthologs for these genes 

have been identified (Bailey et al., 2003, 2004). Several of these genes have been 

identified in the mSCN but not the vSCN in Japanese quail (Yoshimura et al. 2001; 

Yasuo et al., 2003).  In the house sparrow, pPer2 expression is rhythmic in both the 
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mSCN and the vSCN such that it is highest during the mid-day (Brandstatter et al., 

2001), which is similar to the phasing seen in the mouse SCN (Tei et al. 1997). 

 

A working model of the avian SCN 

 The present data and literature suggest to us that there is a role for both the 

mSCN and the vSCN in the avian circadian system.  As with the pineal and the retinae, 

these structures will likely have varying levels of importance in different avian species.  

We hypothesize that both the mSCN and the vSCN are involved in a suprachiasmatic 

complex that serves as a functional equivalent of the mammalian SCN.  At this stage, 

attribution of “homology” to these structures is premature.  Further developmental and 

more comparative analyses of extant amniote vertebrate species will be necessary to 

truly address this issue.   

 Our model (Fig. 18) states that light information is transmitted to the 

suprachiasmatic complex via three separate input pathways.  The first of these is the 

retinohypothalamic tract (RHT), which has been well characterized in the vSCN of many 

avian species.  Sparse RHT input also transmits light information to the mSCN.  The 

second photic input to the vSCN is indirect, through the lateral geniculate nuclei via a 

pathway homologous to the mammalian GHT, described above.  The third and final light 

input to our suprachiasmatic complex is input to the mSCN via the encephalic 

photoreceptors of LSO and PVO.  While sufficient data has not been produced to bear 

out the existence of a specific connection, the hypothesis is supported by the finding of 

Yoshimura et al. (2001) that a one-hour light pulse during the subjective night is capable  
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Fig. 18. A working model of the avian SCN.  This model addresses the transduction of 
light to the SCN and summarizes what we hypothesize are the roles of the vSCN and 
mSCN in the circadian system.  Solid lines represent connections reported in the current 
study and the literature.  The dashed line represents speculation based on indirect 
evidence.  For abbreviations, see list. 
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of inducing per2 RNA expression in the mSCN of quail whose eyes are covered by 

opaque black rubber caps, barring RHT and GHT transduction of the signal.  The mSCN 

and vSCN have bilateral and bidirectional communication, allowing them to share light 

information with one another. 

 Both the mSCN and vSCN have been implicated in the literature as circadian 

pacemakers.  Our model suggests that the mSCN drives locomotor activity and body 

temperature rhythms, based on lesion studies (Ebihara et al., 1987; Yoshimura et al., 

2001).  Conversely, we propose that the vSCN regulates choroidal blood flow via EWm, 

drives and/or entrains circadian rhythms of visual function and regulates pineal 

melatonin secretion via the sympathetic nervous system.  As was shown in this study, 

there is abundant connectivity between the vSCN and structures of the thalamofugal, 

tectofugal and accessory optic visual pathways.   

 Why are there two structures in birds undertaking the role of the mammalian 

SCN?  We hypothesize that the evolution of this organization involves the development 

of the supraoptic decussation, which is extensive in birds and first visible in the chick on 

embryonic day 8 (E8).  By E15, it is quite thick and has visible subdivisions (Ehrlich et 

al., 1988).  The retinohypothalamic innervation of the hypothalamus, on the other hand, 

is not visible until E15 or E16 (Shimizu et al., 1984).  We propose that, because of the 

conflicting developmental timing of the supraoptic decussation and RHT, mSCN 

innervation by retinohypothalamic terminals is not physically permitted.  Instead, retinal 

afferents innervate the vSCN, which in turn innervate the mSCN. If this is the case, this 

anatomical configuration may be a derived feature and unique to birds, which express a 
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greater inter-hemispheric interaction of visual information than do other taxa (Ehrlich et 

al., 1988) with the possible exception of crocodilians (Crosby and Showers, 1969). If 

this is the case, then we might expect a similar organization in crocodilians as birds, 

which share archosaurian ancestry (Rogers, 1999), but it is likely that the SCN of other 

reptile taxa are co-localized in the preoptic recess. Clearly, more comparative research 

on non-mammalian vertebrates will be required to test this hypothesis. 

 Further, analysis of the chemoarchitecture of these two structures in this and 

other avian species will be important in understanding avian circadian organization as 

well as the evolution of the diencephalons.  More detailed studies of the development of 

the retinohypothalamic tract in birds and other non-mammalian vertebrates may provide 

a window into knowledge of suprachiasmatic nucleus function and evolution. 
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CHAPTER IV 

THE CHICKEN SUPRACHIASMATIC NUCLEI: 

AUTORADIOGRAPHIC AND IMMUNOHISTOCHEMICAL ANALYSIS 

 

INTRODUCTION 

The suprachiasmatic nucleus (SCN) of the hypothalamus is the primary 

pacemaker in all mammals studied (Moore, 1979).  The SCN receives primary visual 

input via the retinohypothalamic tract (RHT; Moore et al., 1971; Moore and Lenn, 1972; 

Moore, 1973), as well as indirect retinal input from the lateral geniculate nucleus via the 

geniculohypothalamic tract (GHT; Card and Moore, 1982, 1989; Moore et al., 1984; 

Harrington et al., 1985; Moore and Speh, 1993; Moore and Card, 1994).  Surgical 

destruction of the SCN produces arrhythmicity in locomotor behavior (Moore and 

Eichler, 1972; Stephan and Zucker, 1972; Moore and Klein, 1974; Klein and Moore, 

1979) and transplant of fetal SCN tissue into the third ventricle restores rhythmicity to 

SCN-lesioned animals (Drucker-Colin et al., 1984; Sawaki et al., 1984; Lehman et al., 

1987).  Further, many functional properties of the SCN are known to oscillate, including 

glucose utilization in vivo and in vitro (Schwartz and Gainer, 1977; Schwartz et al., 

1980; Newman et al., 1992), neuronal firing in vivo and in vitro (Inouye and Kawamura, 

1979; Green and Gillette, 1982; Groos and Hendriks, 1982; Shibata et al., 1982) and 

gene expression in vivo and in vitro (Yamazaki et al., 2000; Hastings and Herzog, 2004). 

Antigen distribution in the mammalian SCN is well established; however, it is 

variable among the few species studied thus far (Card and Moore, 1982; van den Pol and 
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Tsujimoto, 1985; Cassone et al., 1988b).  For example, the eutherian mammalian SCN 

may be subdivided into the ventrolateral, retinorecipient “core”, which is 

immunoreactive for arginine vasopressin (AVP), and the dorsomedial “shell”, which 

contains neurons positive for vasoactive intestinal polypeptide (VIP; Cassone et al., 

1988b; Moore et al., 2002).  In contrast, the marsupial SCN differs from the eutherian 

SCN in that the dorsomedial aspect of the structure is retinorecipient and co-localizes 

with both AVP and VIP immunoreactivity (Cassone et al., 1988b).  Thus, specific details 

of immunohistochemical distributions in the SCN are phylogenetically labile even 

among mammals. 

In birds, there is evidence that a circadian oscillator, presumed to be homologous 

to the mammalian SCN, resides in the anterior hypothalamus of birds (Ebihara and 

Kawamura, 1981; Simpson and Follett, 1981; Takahashi and Menaker, 1982).  Early 

cytoarchitectural studies identified a structure near the preoptic recess of the third 

ventricle that was thought to be homologous to the mammalian SCN.  While this 

structure has been referred to in the literature by a variety of designations (Chapter III), 

we will refer to this structure as the medial suprachiasmatic nucleus (mSCN), as 

indicated by Kuenzel and Masson (1988).  Some studies have reported retinal afferents 

in the mSCN, but the label is weak (Hartwig, 1974; Oliver et al., 1978) or undocumented 

with photomicrographs (Ebihara and Kawamura, 1981). 

A lateral hypothalamic nucleus is the primary, if not only, retinorecipient nucleus 

in the hypothalamus in the ringed turtledove (Streptopelia risoria; Cooper et al., 1983; 

Norgren and Silver, 1989), house sparrow (Passer domesticus; Cassone and Moore, 
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1987), pigeon (Meier, 1973; Gamlin et al., 1982; Shimizu et al., 1994), duck (Anas 

platyrhynchos; Bons, 1976), and chicken (Shimizu et al., 1984; Chapter III).  As with the 

mSCN, it has been given many different names (cf. Chapter III); we will refer to this 

structure as the visual suprachiasmatic nucleus (vSCN). 

In Chapter III, we addressed the efferent and afferent connections of both the 

mSCN and vSCN.  Using cholera toxin B-subunit and biotin dextran amine tract tracing, 

we determined that the mSCN and vSCN jointly possess more efferents and afferents 

than does the mammalian SCN.  A subset of these connections correlates well with those 

that have been established in rodent species, and the mSCN and vSCN are equally 

similar to the eutherian mammalian SCN.  Based on the information currently available 

on the avian mSCN and vSCN, we presented a working model in which both structures 

participate in a suprachiasmatic complex.  We will revisit this model in our discussion of 

the data presented here. 

The chemoarchitecture of both the mSCN and vSCN has been studied in other 

bird species.  The most extensive study concentrated on only the vSCN of the house 

sparrow (Cassone and Moore, 1987).  The work presented here focuses on three aspects 

of suprachiasmatic organization in the chicken, Gallus domesticus: 1) cytoarchitecture, 

2) retinohypothalamic projections, which corroborates previously reported data using 

different techniques (Chapter III), and 3) chemoarchitecture.  The purpose of this study 

was to further address the question of homology between the putative avian SCN and the 

mammalian SCN.  

MATERIALS AND METHODS 
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Animals 

White leghorn cockerels (Gallus domesticus) were obtained on their hatch date 

from Hy-Line Hatcheries (Bryan, TX) and were kept in heated brooders on a light:dark 

(LD) 12:12 cycle (lights on from 6:00 a.m. to 6:00 p.m. CST).  Food (Purina Start & 

Grow, Brazos Feed & Supply, Bryan, Texas) and water were available ad libitum.  At 

two to three weeks of age, the chickens were used for tract-tracing and 

immunohistochemical procedures.    

 

Retinohypothalamic projections and cytoarchitecture 

Two birds were anesthetized and received an intraocular injection of 10 µCi 3H-

proline in 6 µL 0.75% saline with a 10 µL Hamilton syringe.  Birds were allowed to 

survive 24 hours before they were administered a large dose of pentobarbital and 

perfused with Bouin’s fixative.  Brains were removed, dehydrated, embedded in paraffin 

and sectioned frontally at 15 µm through the diencephalon.  Slides were coated with 

Kodak NTB-2 (Rochester, NY) emulsion and stored in light-tight boxes for two weeks at 

4oC.  They were developed with Kodak D-19 developer, fixed and counter stained with 

cresyl violet. 

For cytoarchitectural analysis, all sections containing the mSCN or vSCN were 

identified using differential interference contrast optics on a Zeiss Axioplan 2 

microscope (Thornwood, NY).  Data regarding retinal terminal fields in the vSCN were 

used to aid in its location.  A digital image of each structure was taken with a 

Hamamatsu Color Chilled 3CCD Camera (Bridgewater, NJ).  The area of each structure 
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was analyzed using Image J (National Institutes of Health, Bethesda, MD) and total cell 

number was counted in Adobe Photoshop (Adobe Systems, Mountain View, CA).  Total 

volume was obtained by multiplying the area of each measured structure by the 

thickness of tissue represented by the section (45 µm) and adding those sectional 

volumes together.  Identified cell types were measured by determining the circumference 

of 50 cells, and size is expressed as the mean diameter ± standard error of the mean.  

Values reported indicate the cytoarchitectural characteristics of the mSCN or vSCN from 

one cerebral hemisphere. 

 

Immunohistochemistry 

Chicks (n=35) were anesthetized with a ketamine/xylazine drug cocktail (90 

mg/kg ketamine, 10 mg/kg xylazine) and perfused transcardially with 50-100 ml saline 

followed by 150-300 ml Zaborsky or 4% paraformaldehyde fixative in 0.1M phosphate 

buffer.  Their brains were removed, post-fixed for one hour and cryoprotected in a series 

of sucrose solutions (10%, 20% and 30%).   

Some brains (n=15) were sectioned frontally (30µm) and floated into phosphate 

buffered saline (PBS; 10mM).  One bin each from six birds were stained with cresyl 

violet at 150µm intervals.  These sections were used to locate structures of interest.  The 

remaining sections were processed immunohistochemically with primary antisera, 

developed in rabbit, against vasopressin (AVP; avian homolog, arginine vasotocin), 

gastrin releasing peptide (GRP), glutamic acid decarboxylase (GAD), glial fibrillary 

acidic protein (GFA), gonadotropin releasing hormone (GnRH), neuropeptide Y (NPY), 
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oxytocin (OT; avian homolog, mesotocin), serotonin (5HT), somatostatin (SS), 

substance P (SubP), tyrosine hydroxylase (TH) and vasoactive intestinal polypeptide 

(VIP).  The GRP antibody was a gift from Dr. N. Brecha.  The GAD antiserum was a 

gift from Drs. I. Kopin and W. Oertel (Oertel et al., 1982).  The NPY antiserum was 

provided by Dr. J. McDonald.  Some antisera against AVP, GFA, GnRH, OT, 5HT, SS, 

SubP, TH and VIP were purchased from INCSTAR (formerly Immunonuclear, now 

DiaSorin, Stillwater, MN).   

The rest of the brains (n=20) were sectioned into PBS at 30 µm on a nearly 

horizontal plane that included both the mSCN and the vSCN.  Sections were processed 

with primary antibodies against AVP, VIP, 5HT, GFA, NPY, GAD, SP, SS, and γ-

aminobutyric acid (GABA; Chemicon International, Temecula, California). 

Immunohistochemistry was performed on these sections.  Briefly, floating 

sections were blocked in PBS containing 0.3% Triton-X-100 and 1% normal goat serum 

(PBSGT) for 1 hour and then incubated in primary antibody (1:1000) in PBSGT for 48 

to 72 hours at 4oC.  Sections were then incubated in biotinylated rabbit anti-goat 

secondary antibody (1:500; Vector Laboratories, Burlingame, CA) in PBSGT for two 

hours at room temperature, followed by a 90 minute incubation in avidin-biotin complex 

from a peroxidase standard kit (1:55; Vector Laboratories, Burlingame, CA) in PBSGT.  

Sections were incubated in 0.5% 3-3’-diaminobenzidine solution in 100 mM Tris buffer 

for five minutes after which 0.21% hydrogen peroxide was added to the solution.  The 

color reaction was stopped when minimal background coloration became evident.  

Sections were rinsed, ordered, mounted onto gelatin-coated slides and dried.  The slides 



104 

were rinsed in PBS and the color reaction was stabilized in 1% cobalt chloride solution.  

The slides were then rinsed, dehydrated, cleared and coverslipped for analysis. 

 

Microscopy and photography 

 An Olympus BH-2 light microscope (Melville, NY) was used to examine 

processed tissues.  Immunohistochemically processed sections were observed using a 

phase contrast condenser with differential interference contrast optics, while 

autoradiographic tract tracing was viewed under dark field.  Photomicrographs were 

taken with an Olympus C-35AD-4 camera on Kodak Gold 200 film.  Prints were 

scanned at 300 DPI and opened in Adobe Photoshop 7.0.1, where they received minor 

brightness and contrast adjustments. 

 

RESULTS 

Cytoarchitecture 

 The mSCN is just dorsal to the optic chiasm in the most anterior portion of the 

hypothalamus, apposed to the preoptic recess of the third ventricle, about 0.5 mm lateral 

of the midline.  It is a crescent-shaped band with tapered ends, about 100-175 µm thick 

and 400-800 µm wide.  It is 300 µm long rostrocaudally.  It contains roughly 5,300 cells 

in a 0.014 mm3 volume, giving a total cell density of 385 ± 14 cells per 100 µm3.  The 

cells in this structure are small, measuring 10.6 ± 0.2 µm.   

The vSCN is slightly more caudal than the mSCN and is roughly 1.5 mm lateral 

of the midline.  It sits atop the optic chiasm, lateral to the dorsal supraoptic decussation 
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and medial of the ventrolateral geniculate nucleus.  There is a blood vessel frequently 

associated with this nucleus.  It is roughly triangular in rostral coronal sections, but 

becomes more rounded and smaller caudally.  Therefore, it measures from 150-500 µm 

dorsoventrally and 150-500 µm mediolaterally, with a mean diameter of 350 µm.  It is 

950 µm on its rostrocaudal axis.  The small neurons of the vSCN (13.2 ± 0.3 µm) are 

slightly larger than those in the mSCN and are less densely packed.  Total cell density is 

211 ± 4 cells per 100 µm3, representing about 22,000 cells in a volume of 0.105 mm3.  

Larger neurons (16.8 ± 0.4 µm) are found at the ventral and medial borders of the vSCN. 

 

Retinohypothalamic projections 

A completely contralateral retinohypothalamic projection (RHT) to the vSCN is 

evident (Fig. 19B).  The RHT has the same spatial distribution as the nucleus itself:  the 

borders of the nucleus are defined by the projection and are described above.  No label 

was observed in the mSCN (Fig. 19A).  A schematic representation of visual projections 

in the planes of interest is shown on the left-hand panels of Figure 20. 

 

Immunohistochemistry 

Immunohistochemical results are shown schematically in Figure 20.  Sparse 

fibers and modest amounts of cellular label positive for AVP-like immunoreactivity (LI) 

were found within mSCN (Fig. 20).  The vSCN contained only a few sparse large  
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Fig. 19. Representative photomicrographs of retinal input to the brain following injection 
of tritiated proline to the eye.  Note the lack of visible retinal input to the mSCN (A) and 
the presence of retinal terminals throughout the vSCN (B).  For abbreviations, see list.  
Scale bar = 1 mm. 
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AVP-LI cells, however, a dense plexus of fibers exits the vSCN from its dorsal border 

and spans the distance to PVN (Figs. 20, 21D).  VIP-LI and 5HT-LI fibers are sparsely 

present in the mSCN.  However, they are not arranged in a discernible nuclear 

arrangement (Fig. 20).  In the vSCN, large VIP-LI cells are present on the dorsomedial 

border and a moderate fiber plexus is present in the rostral portion of the nucleus (Figs. 

20, 21E).  5HT-LI fibers form a dense plexus in the vSCN, which becomes less dense in 

the caudal region of the nucleus (Figs. 20, 21J).  Sparse GRP-LI fibers and cellular 

staining are present within the mSCN (Figs. 20, 21A), with only sparse fibers present in 

the vSCN (Fig. 20).  NPY-LI and Sub-P-LI fibers are found in the medial portion of 

mSCN (Fig. 20).  In the vSCN, a moderate NPY-LI fiber plexus is more dense in the 

rostral half of the nucleus (Figs. 20, 21H).  Small SubP-LI cells are found in the ventral 

vSCN, along with a dorsal fiber plexus that extends beyond the dorsal border (Figs. 20, 

21F).  GFA-LI cells are present within the medial portion of the mSCN (Fig. 20), while 

they form a dense aggregation within the vSCN (Figs. 20, 21G).  SS-LI fibers are sparse 

in mSCN (Fig. 20).  SS-LI small cells and fibers are dense in the rostral portion of the 

vSCN (Figs. 20, 21I).  GAD-LI follows the general pattern of retinal input, while 

staining additional areas such as the lateral bed nucleus of the stria terminalis and the 

ventral region of the anterior hypothalamus (Fig. 20).  GAD-LI fibers in this region 

include mSCN and the anterior hypothalamic nucleus, without forming discernible 

aggregations in any one structure.  In the vSCN, small GAD-LI cells and fibers are dense 

throughout the nucleus (Figs. 20, 21K).  Cells and fibers are also present in the 

ventrolateral geniculate nucleus and the rostrolateral part of the dorsolateral anterior  
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Fig. 20. Schematic illustration of retinal terminals and antigen distribution at three levels 
of the hypothalamus.  Structures of interest are labeled and retinal terminals are mapped 
on the left hemisphere of the sections in the left panel.  Fibers and cells identified 
immunohistochemically are indicated for a variety of antibodies.  A summary of this 
information is available in Table 6.  The distribution of fibers and cells on these maps 
represent the relative strength of staining in these areas, but do not reflect measured 
values.  Abbreviations: ARG, 3H-proline autoradiography; all others, see list. 
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Fig. 20 Continued 
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Fig. 21. Representative photomicrographs of immunohistochemical staining in the 
mSCN (A-C) and vSCN (D-K).  Note the presence of TH fibers and cells (B) and GnRH 
fibers (C) in the mSCN.  Cellular GAD distribution (K) in the vSCN follows the pattern 
of retinal input.  For abbreviations, see list.  Scale bar = 1 mm in B; 400 µm in D-I; 200 
µm in A,C,J,K. 
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TABLE 6. Antigen distribution of the suprachiasmatic nuclei of the chick, sparrow 
and rat. 

Chicken 
mSCN vSCN 

Sparrow 
vSCN 

Rat 
SCN Antigen 

fibers cells fibers cells fibers cells fibers cells 
AVP + ++ dorsal + + ++ +++ +++ 
VIP + - ++ medial + medial +++ +++ 
GRP + ++ + - +++ ++ ++ ++ 
5HT + - +++ - +++ - +++ - 
NPY ++ - ++ - + - ++ - 
SubP + - ++ ++ + ++ ++ + 
GFA  ++  +++    +++ 
SS + - +++ +++   ++ + 

GAD ++ - +++ +++ +++ +++ +++ +++ 
TH ++ ++ + -   - - 
MT + + - -   - - 

GnRH ++ - - -   - - 
Strength of antigen signal: +++, strong; ++, moderate; +, sparse; -, none present.  
Cells left blank indicate no data is available in the literature.  For abbreviations, 
see list.   

 
 

 
nucleus (Fig. 20).  TH-LI fibers and cells are found within mSCN, particularly in the 

medial portion (Figs. 20, 21B), while they surround, and only very occasionally enter 

vSCN (Fig. 20).  In mSCN, there are sparse OT-LI fibers and cells (Fig. 20), as well as a 

moderate plexus of GnRH-LI fibers (Figs. 20, 21C).  Neither OT-LI nor GnRH-LI is 

found within or proximal to the vSCN.  The data are summarized in Table 6, and 

compared with data from previous studies. 

 

Horizontal sections 

 Immunohistochemistry performed on off-horizontal sections that include both the 

mSCN and vSCN revealed a GFA-LI “bridge” of astrocytes that connects the two 
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Fig. 22. The astrocytic bridge as demonstrated by immunohistochemical analysis with 
GFAP.  A  In a section cut on a horizontal plane containing both the mSCN (black 
arrows) and the vSCN (white arrows), the bridge is clearly visible extending between the 
two structures.  B  The section just inferior to A demonstrates that this bridge travels 
within the white matter ventral to the two structures.  Scale bar = 17.8 mm in the upper 
panels of A and B; 4mm in the lower panels. 
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structures (Fig. 22).  This astrocytic bridge is the only strongly stained GFA-LI structure 

in this region.  The bridge appears to be a direct pathway that travels within (Fig. 22A) 

and slightly inferior to (Fig. 22B) the plane created by the two structures.  We attempted 

to identify a neuronal connection that may be paired with this astrocytic bridge using 

antibodies against AVT, VIP, 5HT, NPY, SubP, SS, GAD and GABA.  We were unable 

to identify any neuronal connection within this plane of section. 

 

DISCUSSION 

 Our findings regarding retinal input to and antigen distribution of the anterior 

hypothalamus indicate that the chick vSCN is more similar to the mammalian SCN than 

is the mSCN.  Previous studies, however, have indicated a role for both structures in the 

avian circadian system.  We expand below upon our working model of the avian SCN, 

taking into consideration new findings regarding the mSCN and vSCN. 

 

Physical properties of the avian suprachiasmatic nuclei 

 Based on location alone, the mSCN has been dubbed the avian homolog to the 

mammalian SCN.  There is, however, significant dissimilarity worthy of mention:  1) it 

is smaller, 2) it is significantly shorter rostrocaudally, and 3) it is apposed to the preoptic 

recess of the third ventricle.  Therefore, it is more similar in its position to the rostral 

portion of the rat SCN, called the preoptic suprachiasmatic nucleus by Palkovits and 

Brownstein (1988).  Our findings here indicate that there is no retinal input to the 

mSCN.  In the first paper of this series, we demonstrated using CTB tract tracing that 
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there are sparse fibers of passage and some retinal terminals in the mSCN and areas just 

dorsal to the mSCN (Chapter III).  The lack of significant retinal input does not support 

the contention that the mSCN is the avian homolog of the mammalian SCN.  The 

chemoarchitecture of the mSCN is also clearly dissimilar from that of the mammalian 

SCN.  The mSCN contains cells and fibers that stain positively for TH, OT and GnRH, 

which do not populate the mammalian SCN (van den Pol and Tsujimoto, 1985).  

Concurrently, many of the antigens found within the mammalian SCN are not found in 

the mSCN or, if they are, are qualitatively different in their distribution.  The exception 

to this is GRP, which we identified in the chick mSCN but not the vSCN.   GRP-LI cells 

and fibers are found in the vSCN of the house sparrow (Cassone and Moore, 1987) and 

the mammalian SCN (Moore et al., 2002).   

 The position of the vSCN, on the other hand, is quite different than the 

mammalian SCN; it is more lateral and caudal.  It is similar in its length, although it is 

larger in diameter and total volume than is the rat SCN (Moore et al., 2002); this is 

consistent with the fact that the entire chick brain is larger than that of the rat.  The 

borders of the vSCN are defined by its retinal input, the terminals of which are found 

throughout the nucleus.  This is also dissimilar from the mammalian SCN in that only a 

portion of the mammalian nucleus receives retinal input via the RHT.  However, the 

location of that retinal input is variable among mammalian species studied thus far 

(Cassone et al., 1988b).   

The chemoarchitecture of the vSCN is very similar to that of the mammalian 

SCN; it is well defined by a heterogeneous population of cells and fibers, present within 
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or bordering the nucleus, that react differentially to antibodies against AVP, VIP, 5HT, 

NPY, SubP, GFA, SS and GAD, all of which are present in the mammalian SCN.  It 

does not react to antibodies generated against TH, OT and GnRH, antigens that are not 

present in the mammalian SCN.  This chemoarchitectural similarity to the mammalian 

SCN is shared with the vSCN of the house sparrow (Table 6; Cassone and Moore, 1987).  

The chemoarchitectural similarity of the vSCN to the mammalian SCN is more striking 

than any similarities that exist between the mSCN and the mammalian SCN, indicating 

that the vSCN is a more likely homolog. 

Of particular interest in this study is AVP-LI.  AVP-LI fibers form a clear 

pathway between the vSCN and the hypothalamic paraventricular nucleus (PVN), a 

structure that communicates with the mammalian SCN via AVP fibers (Leak and Moore, 

2001; Abrahamson and Moore, 2001).  The fibers we report in the chick, however, do 

not arise from the vSCN, in which only a few sparse projection neurons are visible; 

instead, they appear to arise from a population of neurons in PVN itself, which contains 

a dense population of AVT-LI cells.  This seems likely in light of our finding in Chapter 

III that CTB injections to the vSCN retrogradely labeled cells in PVN.  These data 

explain a possible pathway of communication from PVN to the vSCN; however, they do 

not address the question of how the vSCN might return information to PVN.  One may 

reasonably hypothesize that mSCN completes the circuit by sending efferents to PVN.  

First, abundant efferents from mSCN to PVN were identified by BDA iontophoresis and 

transport.  Second, bilateral, bidirectional communication between the vSCN and the 

mSCN was demonstrated (Chapter III).  Finally, as we have shown here, mSCN contains 
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a moderate number of cells positive for AVT.  It is plausible, then, that there is a circuit 

between these two suprachiasmatic regions and the PVN. 

 

Which came first…? 

 It is important to consider the developmental process that results in a 

heterogeneous population of cells in the SCN:  do retinal terminals find the SCN based 

on antigenicity or does the appropriate antigen distribution develop after retinal 

innervation?  Studies in anophthalmic mice are a useful means of addressing this query 

for rodents.  The optic primordia of anophthalmic mice are resorbed during embryonic 

development and they are almost always born without eyes and optic nerves.  This 

model system offers the rare ability to consider the SCN in an animal that, non-

surgically, lacks retinal input.  The SCN of these mice is cytoarchitecturally disrupted:  

one or both nuclei are frequently absent and, when both nuclei are present, they are 

asymmetric and vary in size (Laemle and Rusa, 1992).  Two antigens in this model 

system have been studied—VIP and NPY.  VIP-LI cells and fibers of the SCN, when 

present, are more diffuse than those in wildtype mice, and many ectopic sites of VIP 

immunoreactivity are present in the hypothalamus (Laemle and Rusa, 1992).  It has been 

shown that when VIP is present in the SCN, it is expressed rhythmically (Laemle et al., 

1995); however, this rhythmic expression is not sufficient to produce locomotor rhythms 

(Laemle and Ottenweller, 2001).  Anophthalmic mice have three distinct behavioral 

phenotypes, ranging from rhythmic with a stable period, to rhythmic with an unstable 

period, to arrhythmic (Laemle and Ottenweller, 1998).  The geniculohypothalamic tract 
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(GHT) in these mice has also been studied.  Despite the lack of retinal innervation, the 

intergeniculate leaflet develops, but it is cytoarchitecturally disrupted.  NPY terminal 

fields, an indicator of GHT input to the SCN, are formed, but they are dissimilar from 

the same input in eyed mice (Laemle et al., 1993).   

VIP and NPY are therefore present in anophthalmic mice, but are disrupted in 

their distribution.  These data suggest that that antigenicity is somewhat predetermined; 

however, the precise chemoarchitecture of the SCN is influenced by retinal input.  There 

currently are no anophthalmic avian models available with which to carry out similar 

studies of the vSCN and mSCN; however, studies concerning the multiple light input 

pathways and their terminal formation in the context of antigen distribution development 

and cellular origin in the emerging hypothalamus would be very useful in the 

determination of the interactions that result in a functional SCN, particularly in the avian 

complex.   

Developmental aspects of the molecular biology of circadian clocks may also 

provide a broader view of SCN formation.  Several transcription factors and kinases are 

involved in a transcriptional-translational feedback loop that is central to a molecular 

model for the generation of circadian rhythms (Reppert and Weaver, 2002).  Orthologs 

for these genes have been identified in chicks (Bailey et al., 2003, 2004) and have been 

identified in the mSCN of the Japanese quail (Yoshimura et al., 2001; Yasuo et al., 

2003) and house sparrow (Brandstatter et al., 2001).  In the house sparrow, pPer2 

expression has been demonstrated in both the mSCN and the vSCN (Brandstatter et al., 

2001). 
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Astrocytes in the mammalian circadian system 

 Our immunohistochemical analysis presented some exciting data, indicating a 

function for astrocytes in the chick suprachiasmatic complex.  However, the majority of 

study regarding astrocytes in the circadian system has been carried out in mammals, and 

so it is important to consider what is known about astrocytes in the rodent SCN.  It was 

first suggested that astrocytes might play a role in the biological clock when it was 

demonstrated that GFA antibodies significantly label cells within the SCN of hamsters 

and rats (Morin et al., 1989).  GFA expression in the rodent SCN is rhythmic (Lavialle 

and Serviere, 1993) and, when animals are enucleated, GFA expression in the SCN 

decreases (Lavialle et al., 2001). In fact, merely placing rats in constant darkness leads to 

a decrease in GFA expression, and reintroduction of animals to a light:dark cycle will 

restore GFA expression (Ikeda et al., 2003).  Furthermore, administration of pituitary 

adenylate cyclase-activiating peptide (PACAP), an RHT neurotransmitter (Hannibal, 

2002), to cultured astrocytes stimulates growth of their processes (Ikeda et al., 2003).  

These data strongly suggest a modulatory effect of light on astrocytes.   

Many studies have indicated a functional role for astrocytes.  Astrocytes 

associated with the RHT have been shown to modulate the concentration of glutamate, 

another RHT neurotransmitter (de Vries et al., 1993), in the extracellular fluid of the 

SCN (Lavialle and Serviere, 1995).  Furthermore, release of glutamate and serotonin at 

retinal terminals in the SCN causes increased intracellular calcium concentration in both 

neurons and astrocytes, often triggering intercellular calcium waves via gap junctions 

between astrocytes (van den Pol et al., 1992).  Fluorocitrate, which inhibits glial 
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metabolism, produces behavioral arrhythmicity when injected into the SCN (Prosser et 

al., 1994).   

One may hypothesize, then, that astrocytes play a role in the generation of 

circadian rhythms.  However, astrocytes do not confer rhythmicity upon neurons in a 

dispersed SCN culture (Welsh and Reppert, 1996).  Within this culture, neurons overlay 

confluent astrocytes that exhibit connexin43 positive gap junctions.  The neurons, 

however, are not gap-junctionally coupled to either astrocytes or to other neurons (Welsh 

and Reppert, 1996).  These data suggest that the single-cell firing rates in SCN neurons 

are autonomous and not imposed by either astrocytes or by a subset of pacemaker 

neurons.  It has also been demonstrated that blockade of gap junctional communication 

in the SCN may either phase delay or abolish rhythmic neuronal activity in vitro (Prosser 

et al., 1994); however, more recent studies have indicated that SCN neurons are indeed 

gap junctionally coupled (cf. Colwell, 2005) and, therefore, this arrhythmicity could be 

due to disruption of both neuronal and astrocytic communication.  It is apparent that 

astrocytes play some role in the synchronization of rhythms in the mammalian SCN; 

however, this role is not well defined and is likely part of a network of interactions that 

cooperate to form a coordinated signal from the SCN. 

 

The working model of the avian SCN and a potential role for astrocytes 

 In Chapter III, we introduced a working model of the avian suprachiasmatic 

complex.  Our model (Fig. 23) states that there are three input pathways for light to the 

SCN:  1) RHT efferents primarily to the vSCN, with sparse input to the mSCN, 2) GHT 
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Fig. 23. An updated working model of the avian SCN.  This model addresses input 
pathways of light to the avian SCN and summarizes what we hypothesize are the roles of 
the vSCN and mSCN in the circadian system.  Solid lines represent connections 
supported by data in this document or in the literature.   The dashed line represents a 
speculative multisynaptic pathway.  New to this model is the addition of the astrocytic 
bridge, indicated by a chain of grey stars.  For abbreviations, see list. 
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efferents to the vSCN and 3) encephalic photoreceptor input to the mSCN, which has 

been supported by indirect evidence (Yoshimura et al., 2001).  We previously 

demonstrated that there is a bilateral and bidirectional neuronal connection between the 

mSCN and the vSCN (Chapter III), presumably allowing them to share light information 

and participate in multisynaptic pathways.  In the current study, we identified a unique 

GFA-LI pathway between the mSCN and the vSCN, which we have named the 

astrocytic bridge.  We were unable to identify a neuronal pathway within the same plane. 

These data suggest that the astrocytic bridge is a functional component of the 

suprachiasmatic complex.   

 Therefore, adding to our model, we hypothesize that the astrocytic bridge plays a 

modulatory role in the avian SCN, serving to modulate synaptic communication between 

the mSCN and vSCN and to synchronize neuronal signaling in these structures, as has 

been demonstrated in mammals.  Astrocyte involvement in avian circadian structures is 

not a new concept:  in the avian pineal gland, astrocytes coupled by gap junctions 

synchronize pineal cells (Berthoud et al., 2000).  While avian suprachiasmatic astrocytes 

themselves have not been studied functionally, experiments in our laboratory have 

utilized astrocyte cultures from the chick diencephalon, which includes the 

suprachiasmatic region.  These diencephalic astrocytes are gap junctionally coupled and 

they send signals via intercellular calcium waves (Peters et al., 2005), similar to the 

situation in mammals.  These astrocytes also possess melatonin receptors, and their 

functional properties are affected by melatonin administration.  First, melatonin 

increases resting intracellular calcium levels.  Second, melatonin enhances the spread of 
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intercellular calcium waves.  Third, melatonin administration decreases the degree of 

gap junctional coupling among diencephalic astrocytes (Peters et al., 2005).  This third 

finding is counterintuitive, given that calcium wave spread is enhanced, and may be 

explained in one of three ways:  1) a functional switch results in the use of alternative 

mechanisms for calcium wave spread, 2) gap junctional efficiency is enhanced despite 

their lowered expression or 3) this is an in vitro phenomenon that will not hold true in in 

vivo studies.  Given these data, it is likely that the astrocytic bridge is modulated by 

melatonin.  This contention is supported by the finding that glucose metabolism in 

cultured diencephalic chick astrocytes may be entrained by melatonin cycles (Adachi et 

al., 2002).  Given the current data, it is not possible to ascribe a specific function to the 

astrocytic bridge.  Future studies involving suprachiasmatic astrocytes may provide 

further insight into their mechanism of action.   

Both the mSCN and vSCN have been implicated in the literature as circadian 

pacemakers.  Our model suggests that the mSCN drives locomotor activity and body 

temperature rhythms, based on lesion studies (Ebihara et al., 1987; Yoshimura et al., 

2001).  Meanwhile, the vSCN regulates choroidal blood flow via the medial nucleus of 

Edinger-Westphal (Gamlin et al., 1982; Fitzgerald et al., 1990; Reiner et al., 1990; 

Chapter III, Chapter V), visual function (Wu et al., 2000; McGoogan and Cassone, 1999; 

Chapter III) and pineal melatonin secretion via the sympathetic autonomic nervous 

system (Cassone et al., 1990).  Pineal melatonin then has a variety of downstream 

effects, which likely includes modulation of the astrocytic bridge.   
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The question of homology 

 Homology exists when a property of two or more taxa is found in a common 

ancestor or when one is derived serially from the other (Northcutt, 1984).  There is a 

paucity of information concerning the SCN over the full range of mammalian taxa; 

indeed, most circadian research has focused upon just three rodent species—the rat, 

Rattus norvegicus, the hamster, Mesocricetus auratus, and the mouse, Mus musculus.  

What information there is suggests that, by retinal input and antigen distribution alone, 

the vSCN is the homolog of the mammalian SCN; however, functional studies suggest a 

role for both structures.  More information regarding the non-eutherian mammalian SCN 

is required before homology may be credited to any avian structure.  Further study of the 

reptilian SCN may also provide invaluable information for tackling the question of 

homology.  It is clear, however, that the mSCN and vSCN are involved in the circadian 

system, homologs or not. 
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CHAPTER V 

DATA INDICATE THAT INTRAVITREAL INJECTION OF 

PSEUDORABIES VIRUS BARTHA RETROGRADELY INFECTS THE 

SUPRACHIASMATIC COMPLEX OF THE CHICK 

 

INTRODUCTION 

 Many aspects of vertebrate ocular physiology are regulated by the 

parasympathetic autonomic nervous system, including pupilloconstriction, 

accommodation and choroidal blood flow (Marwitt et al., 1971; Erichsen and May, 

2002; Ruskell, 1971).  In mammals, preganglionic fibers from the nucleus of Edinger-

Westphal (EW) travel with the oculomotor nerve and synapse in neurons of the ciliary 

ganglion, which send postganglionic fibers to the ciliary body and smooth muscles of the 

iris (Erichsen and May, 2002).  Choroidal blood flow is regulated via a multisynaptic 

pathway involving the hypothalamic paraventricular nucleus, the superior salivatory 

nucleus and the pterygopalatine ganglion, from which postganglionic fibers to the 

choroid arise (cf. Smeraski et al., 2004).  In birds, EW has two subdivisions (Cowan and 

Wenger, 1968; Narayanan and Narayanan, 1976).  The medial aspect of EW is called 

EWm, while the lateral part is EWl.  Preganglionic fibers from EWm synapse on choroid 

neurons in the ciliary ganglion, the postsynaptic fibers of which innervate blood vessels 

of the choroid (Reiner et al., 1983; Meriney and Pilar, 1987).  Preganglionic fibers from 

EWl synapse on ciliary neurons in the ciliary ganglion and, similar to the situation in 
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mammals, postganglionic fibers innervate the ciliary body and iris (Martin and Pilar, 

1963; Hess, 1965, 1966; Marwitt et al., 1971). 

 In previous chapters, a working model of the suprachiasmatic complex, involving 

two central structures, was developed.  Data presented in this document and in the 

literature have indicated a role for both the visual suprachiasmatic nucleus (vSCN) and 

the medial suprachiasmatic nucleus (mSCN) in the avian circadian system.  In the 

pigeon, the vSCN is involved in the regulation of choroidal blood flow.  Horseradish 

peroxidase injections to EW retrogradely label cells in the contralateral vSCN and 

autoradiographic visualization of tritiated proline tract tracing from the vSCN identified 

a terminal field specifically in EWm (Gamlin et al., 1982).  This terminal field 

corresponds to a substance P-like immunoreactive (SubP-LI) fiber plexus (Gamlin et al., 

1982).  The pigeon vSCN contains abundant SubP-LI cells (Gamlin et al., 1982) 

distributed similarly to those found in the chick (Chapter IV).  Further, bilateral lesion of 

the vSCN eliminates the presence of the SubP-LI fiber plexus in EWm, suggesting that 

SubP is the neurotransmitter involved in this pathway (Gamlin et al., 1982).  Studies 

involving stimulation of the vSCN (Reiner et al., 1990), as well as stimulation or lesion 

of EWm (Fitzgerald et al., 1990), clearly demonstrate their roles in the regulation of 

choroidal blood flow. 

 A similar regulatory pathway in mammals has been suggested by studies using 

Pseudorabies virus Bartha, an attenuated live viral strain capable of transsynaptically 

infecting CNS structures after peripheral application or injection into the CNS (Card et 

al., 1991).  Intravitreal injection results in infection of a few retinorecipient structures, 
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including the SCN, intergeniculate leaflet, olivary pretectal nucleus and lateral terminal 

nucleus.  This limited infection was initially attributed to restricted tropism to a subset of 

retinal ganglion cells, resulting in limited anterograde transport (Card et al., 1991).  

Genetic analysis, however, indicated this might not be the case (Brideau et al., 2000; 

Husak et al., 2000; Tomishima and Enquist, 2001).  It was discovered that PRV Bartha 

infects structures by retrograde transport via autonomic circuits to the eye (Pickard et al., 

2002).  These data suggest that the SCN may modulate EW activity, similar to the 

situation in pigeons.  However, because of the mammalian EW differs from birds both 

organizationally and functionally, SCN input to EW would play a modulatory role in 

pupilloconstriction and accommodation (Smeraski et al., 2004).   

 The purpose of this study was to combine the PRV tract tracing technique with 

an avian model to determine the course of retrograde infection to the suprachiasmatic 

complex through autonomic circuits, with specific emphasis on the timing of infection of 

the mSCN and the vSCN.  In Chapter IV, vSCN efferents to EWm were identified and 

we hypothesized that the vSCN was involved in the regulation of choroidal blood flow, 

similar to pigeons.  The data presented here support that hypothesis and suggest a future 

use for PRV tract tracing. 

 

MATERIALS AND METHODS 

Recombinant virus 

 A recombinant strain of PRV constructed to express EGFP, designated PRV-152, 

was used in this study.  Homologous recombination of a plasmid possessing an EGFP 
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expression cassette cloned into the PRV gG gene and the PRV genome was used to 

produce this strain (Smith et al., 2000).  Viruses were grown in pig kidney cells and 

stored at –80oC.  The final titer was 1 x 108 pfu.   

 

Intraocular injections 

 Fertilized eggs were obtained from Hy-Line Hatcheries (Bryan, TX) on 

embryonic day 9 and were kept in a humidified incubator at 37oC for the duration of the 

experiment.  Eggs were candled to locate the embryo and a small portion of the shell and 

outer shell membrane were removed above it.  The hole in the shell was sealed with 

cellophane tape and the eggs were maintained in the incubator.  On embryonic day 12, 

the tape was removed and two small holes were made in the chorioallantoic membrane.  

The embryo was secured with a fine hook and 2 µl PRV-152 was injected slowly into 

the vitreous chamber of one eye with a 10 µl Hamilton syringe.  The syringe was left in 

place for at least one minute to prevent leakage.  The hole in the shell was sealed and the 

egg was placed back into the incubator. 

 

Tissue preparation and immunohistochemistry 

 Embryos (n=1 per timepoint) were removed from their shells and brains were 

taken at eight-hour time intervals, beginning at 48 hours post-injection until 96 hours 

post-injection.  Brains were fixed at 4oC in 4% paraformaldehyde in 0.1M phosphate 

buffer for sixteen hours and were then flash-frozen and stored at –80oC in 2-

methylbutane until use.  Brains were sectioned frontally at 30 µm on a Lipshaw cryostat 
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(Pittsburgh, PA) and sections were collected in 10 mM phosphate buffered saline (PBS).  

Briefly, sections were incubated in 30% methanol and 0.75% hydrogen peroxide in PBS 

for 15 minutes, followed by a 15-minute incubation in 0.5% sodium borohydride in PBS 

to inhibit endogenous peroxidase activity.  They were then blocked in PBS containing 

0.3% Triton-X-100 and 1% normal goat serum (PBSGT) for one hour and then 

incubated in rabbit anti-PRV antibody (1:1000; Dr. J. Patrick Card, University of 

Pittsburgh) in PBSGT for 48 hours at 4oC.  Sections were incubated in biotinylated goat 

anti-rabbit secondary antibody (1:200; Vector Laboratories, Burlingame, CA) in PBSGT 

for two hours at room temperature followed by 90 minutes in avidin-biotin complex 

from a peroxidase standard kit (1:55; Vector Laboratories, Burlingame, CA) in PBSGT.  

Sections were incubated in 0.5% 3-3’-diaminobenzidine solution in 100 mM Tris buffer 

for five minutes after which 0.21% hydrogen peroxide was added to the solution.  The 

color reaction was stopped once background coloration became evident.  Sections were 

rinsed, mounted onto gelatin-coated slides and dried overnight.  The slides were then 

rinsed in PBS and the color reaction was stabilized in 1% cobalt chloride solution.  The 

slides were rinsed, dehydrated, cleared and coverslipped for analysis. 

 

Microscopy and photography 

 An Olympus BH-2 light microscope (Melville, NY) with differential interference 

contrast optics was used to examine brain tissue.  Photomicrographs were taken with an 

Olympus C-35AD-4 camera on Kodak Gold 200 film (Eastman Kodak Company, 

Rochester, NY).  Prints were scanned at 300 DPI and opened in Adobe Photoshop 7.0.1 
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(Adobe Systems, Mountain View, CA), where they received minor brightness and 

contrast adjustments. 

 

RESULTS 

 Many structures were infected within the time period in which samples were 

taken for analysis.  A summary of the structures identified is available in Table 7.  

Structures reported in the results will be limited to those relevant to the central question 

of this study and are only reported at the time they were first identified.  In no case was a 

structure infected at one time and not infected at all subsequent times.  Initial label in 

each structure is relatively sparse, with the exception of EW and the vSCN, as described 

below.  In general, signal strength in each infected structure intensifies over time.  There 

are a few exceptions to this rule in these data, which may be directly attributed to the 

low sample size taken in this study.  Further experiments with a larger sample size will 

need to be carried out for quantitative analysis to be meaningful.  It is also important to 

note that all staining is visible bilaterally due to the strong interconnections of 

symmetrical structures, including EW. 

 Forty-eight hours post-injection, strong label was evident in EW (Fig. 24A).  

Retinorecipient structures infected at this time were the vSCN, which was moderately 

labeled (Fig. 24B), and the nucleus of the basal optic root (nBor; Fig. 24E).  Several 

vSCN afferents were also labeled, including nBor, the ventral tegmental area (AVT), the 

external cellular layer (SCE) and the oculomotor nuclei and tract (OM).  The only 

mSCN efferent infected was the vSCN; however, several structures that are both afferent  
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TABLE 7. Structures infected after intravitreal PRV Bartha injection 
       
Structure 96h 88h 80h 72h 64h 48h 

       
Telencephalon       

AA +      
AId +      
FPL + +     
INP + +     
nBSTL + + + + +  
nBSTM + + + +   
PSV + +     
QF + + + + + + 

       
Diencephalon       
Preoptic area       
MPO + + + +   
POM + + +    
POP + +     
SOe + +     

Hypothalamus       
AM + +     
DMN + + + +   
IH + + + +   
IN + + +    
LHy + +     
MM + + + +   
mSCN + +     
PVN + + + + + + 
vSCN + + + + + + 

Thalamus       
AL + + + + +  
DLAlr + + +    
GLd + + +    
GLv + + + +   
ICT + + + +   
nCPa + + + +   
OV + + + +   
PVT + + + + + + 
TT + + +    
VLT + + + +   

Pretectum       
AP + + + +   
LM + + +    
PPC + + +    
pRot + + +    
PTM + + +    
SpL + +     
SpM +      
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TABLE 7 continued. 

       
Structure 96h 88h 80h 72h 64h 48h 

       
Mesencephalon       

AVT + + + + + + 
EW + + + + + + 
FLM + + + + + + 
FRL + + + +   
FRM + + + +   
GCt + + + + +  
ICo + + + +   
Imc + + +    
IO + + + +   
Ipc + +     
LoC + + + + +  
MLd + + + +   
nBor + + + + + + 
OM + + + + + + 
PPT + + + + + + 
Ru + + + + + + 
SAC + + + + + + 
SCE + + + + + + 
SCv + + + + +  
SGC + + +    
SGFS + + + +   
SGP + + + + +  
TPc + + + + + + 
TVM + + + + + + 

       
Rhombencephalon       

CS + + + +   
Pap + + + +   
PL + + + +   

 
PRV infection of a structure as indicated by immunohistochemistry 
is indicated by a +.  Absence of PRV immunoreactivity is indicated 
by a blank space.  For abbreviations, see list. 

 
 

to the vSCN and efferent from the mSCN were labeled, including the thalamic 

paraventricular nucleus (PVT; Fig. 24C), the hypothalamic paraventricular nucleus 

(PVN; Fig. 24D) and the central album layer of the optic tectum (SAC).   

 The brain collected 56 hours post-injection did not fix well, and therefore, no 

useful information could be obtained from these sections.  Upon observing sections from 

64 hours post-injection, it was evident that only a few more structures had been infected  
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Fig. 24. PRV infection of structures 48 and 64 hours post-injection.  A shows strong 
staining of EW, with B moderate staining of vSCN.  Sparse staining is seen in all other 
structures.  Scale bars: 400 µm. 
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in the intervening period of time.  Two additional vSCN afferents, locus coeruleus (LoC) 

and the periventricular gray layer of the optic tectum (SGP), were infected.  The lateral  

bed nucleus of the stria terminalis (nBSTL; Fig. 24F), an mSCN efferent, was labeled, as 

was the central gray (GCt), which is both a vSCN afferent and an mSCN efferent.   

 There was a large increase in the number of infected structures found 72 hours 

post-injection.  Four retinorecipient structures were infected, including the ventrolateral 

thalamic nucleus (VLT; Fig. 25E), the ventrolateral geniculate nucleus (GLv; Fig. 25A), 

the superficial gray and fiber layer of the optic tectum (SGFS) and the pretectal area 

(AP).  vSCN afferents infected included VLT, GLv and SGFS, as well as the intercalated 

nucleus (ICT), ansa lenticularis (AL) and the papillioform nucleus (Pap).  Also infected 

were the mSCN efferent medial bed nucleus of the stria terminalis (nBSTM; Fig. 25D), 

dorsomedial nucleus (DMN; Fig. 25B) and medial mamillary nucleus (MM).  Also 

infected were AP, the bed nucleus of the pallial commissure (nCPa) and the inferior 

hypothalamic nucleus (IH; Fig. 25B), which are both mSCN efferents and vSCN 

afferents. 

 Retinorecipient structures infected 80 hours post-injection included the 

rostrolateral part of the dorsolateral anterior nucleus (DLAlr; Fig. 26C), the 

mesencephalic lentiform nucleus (LM), the dorsolateral geniculate nucleus (GLd; Fig. 

26D) and the perirotundal area (pRot; Fig. 26D), which is both a vSCN afferent and an 

mSCN efferent.  vSCN afferents that were infected include LM and GLd, as well as the 

principal precommissural nucleus (PPC; Fig. 26D) and the central gray layer of the optic  
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Fig. 25. PRV infection of structures 72 hours post-injection.  A Note the stain in vSCN 
remains moderate, as should be expected based on the distribution of SubP cells in the 
adult vSCN.  Glv infection is irregular.  C EW infection has increased within the 
nucleus.  F In this case, PVT staining is more sparse than before.  This is likely due to 
variability in the progression of the infection in different birds.  This effect would be 
minimized by a higher sample size.  G PVN staining is abundant.  Scale bars: 400 µm. 
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Fig. 26. PRV infection of structures 80 and 88 hours post-injection.  A At 80h post-
injection, neurons in EW are beginning to die and become necrotic, leading to a more 
punctate, less cellular appearance.  B The moderate staining of vSCN remains steady.  D 
Perirotundal staining is indicated by the black arrows.  E PVT infection is again more 
prevalent, however, F PVN staining now appears less abundant than it was at 72h, again, 
likely due to differential progression of the virus.  Shown here is bilateral staining, very 
common due to the amount of crosstalk between the structures involved.  G Also 
showing bilateral staining is EW.  The left nucleus is ipsilateral to the injection, and is 
degenerating faster than the nucleus on the right.  H The vSCN remains constant in its 
infection state.  An artifact of tissue mounting is indicated by the asterisk (*). I Staining 
is now visible in mSCN.  Scale bars: A-C,E,F,H,I, 400mm; D,G, 1mm. 
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tectum (SGC).  The infundibular nucleus (IN), an mSCN efferent, also stained positive 

for PRV. 

 Eighty-eight hours post-injection, fewer structures of interest were infected.  The 

mSCN (Fig. 26I), a vSCN afferent, was labeled.  Also labeled were the anterior 

hypothalamic nucleus (AM) and the lateral hypothalamic area (LHy), which are both 

mSCN efferents and vSCN afferents.  Eight hours later, at 96 hours post-injection, most 

of the additional infected structures were found within the brainstem, and none of them 

are central to the discussion of the material. 

 

DISCUSSION 

 The data presented here support the hypothesis that the chick vSCN is involved 

in regulation of choroidal blood flow.  Further, the timing of infection indicates that the 

mSCN plays no direct role in parasympathetic regulation of ocular physiology.  The 

findings here indicate a use for PRV tracing in developmental studies. 

 Infection of the vSCN occurred within 48 hours of injection, and reached its 

apparent maximal level by 72 hours post-injection.  Subsequent infection of vSCN 

afferents, identified in Chapter III and enumerated above, supports much of that 

previously reported tract-tracing data.  The rate of chick vSCN infection is much faster 

than the infection rate in the mammalian SCN: cells are first seen on the dorsolateral 

border of the SCN of hamsters at 48-72 hours post-injection and are not seen in the SCN 

proper until 72-96 hours post-injection (Smeraski et al., 2004; Pickard et al., 2002).  This 

difference may be attributed to differences between model animals.  In this preliminary 
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study, embryonic chicks were employed, whereas mammalian studies have used 12-20 

week old rodents.  In initial trials with PRV injection, we attempted to inject post-hatch 

chicks, as early as the day of hatching, but the virus was cleared from the nervous 

system without ever being visible.  Therefore, for future studies utilizing tract-tracing 

methods in embryonic chicks, a quicker time course is required.  Indeed, another group 

studying the embryonic chick retinohypothalamic tract using HRP conjugated wheat 

germ agglutinin injections took their first sample only six hours after injection (Shimizu 

et al., 1984).  Interestingly, in the aforementioned study, the authors found that retinal 

terminals were not visible in the vSCN until embryonic day 15 (E15), and usually E16 

(Shimizu et al., 1984).  In the work presented here, a different pathway was exploited 

and the vSCN was identified at E14. Further, the already moderate label present in the 

vSCN 48 hours post-injection suggests that it may be visible even earlier. These data 

indicate that antigen distribution in the vSCN may develop in part before the 

development of retinal input.  PRV tracing of the vSCN via EW in conjunction with 

other in ovo experiments could therefore be invaluable to future studies concerning the 

timeline of development of vSCN antigenicity and synaptic connections.   

 Infection of mSCN was not evident until 88 hours post-infection, suggesting that 

there is no direct neuronal connection between mSCN and EW, which is supported by 

the work presented in Chapter III.  In that chapter, bilateral and bidirectional 

communication between vSCN and mSCN was also demonstrated.  Many other 

structures efferent to mSCN were also infected prior to or concurrently with mSCN, as is 

outlined above.  These structures in concert with the vSCN likely contributed to the 
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retrograde, transsynaptic pattern of infection that finally effected mSCN.  Overall, these 

findings support the pigeon data showing that the vSCN functions in the suprachiasmatic 

role of modulating parasympathetic input to the eye. 

 As was found in mammals (Smeraski et al., 2004; Pickard et al., 2002), a subset 

of retinorecipient structures was infected, indicating that these structures may be worthy 

of study in future work regarding EW regulation.  No absolute comparison to mammals 

may be made because the details of the mammalian SCN input to EW have not yet been 

established.  However, it is clear that, if the suprachiasmatic regulation of EW is similar 

in birds and mammals, the ultimate effect of that regulation is likely different due to 

differences in parasympathetic wiring. 

 As a whole, EW in the pigeon is responsible for several aspects of ocular 

physiology (Marwitt et al., 1971).  Taken separately, EWm is responsible for modulation 

of choroidal blood flow and EWl regulates pupilloconstriction and accommodation (cf. 

Gamlin and Reiner, 1991).  In pigeons, the vSCN projects to EWm only, suggesting a 

role for the vSCN in regulation of choroidal blood flow (Fitzgerald et al., 1990).  As is 

found in the pigeon, there are medial and lateral subdivisions of chick EW (Fujii, 1992), 

which have the same efferent connections (cf. Fujii and Lucaj, 1993).  As was discussed 

previously, the projection from the pigeon vSCN to EWm appears to utilize the 

neurotransmitter SubP.  As was reported in Chapter IV, SubP-LI neurons are present in 

the chick vSCN; however, the antigen distribution of EW has not been reported.  

Further, in Chapter III, it was shown that the vSCN sends efferents to EWm of the chick.  
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Despite the lack of data regarding chick EW antigen distribution, it is likely that the 

chick vSCN projects to EWm, similar to the pigeon.   

The data presented, therefore, support out previously stated hypothesis (Chapter 

III) that the vSCN is involved in the regulation of choroidal blood flow via EWm and the 

ciliary ganglion, but offer no new information in this regard.  Determining the 

distribution of SubP terminal fibers in EW would be a fairly simple way of supporting 

this hypothesis.  With additional confirmation of this pathway in chick through tract 

tracing experiments that include injections to EW, one could reasonably expect the 

pigeon and chick pathways to be functionally homologous. 
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CHAPTER VI 

CONCLUSIONS 

 

 SCN function and organization clearly differ between avian and mammalian 

species.  Studies in mammals have indicated that the SCN is the primary pacemaker in 

the circadian system (cf. Moore et al., 2002).  In contrast, birds have multiple central 

oscillators and pacemakers, which include the pineal gland, the retinae and a 

hypothalamic oscillator, presumed to be homologous to the mammalian SCN (cf. 

Cassone and Moore, 1987).  The location of this avian hypothalamic oscillator has been 

the subject of debate for over twenty years.  Two structures have been suggested in the 

literature—the mSCN and the vSCN.  The data presented in this dissertation has been 

synthesized with data published by other groups into a working model of the avian SCN 

so that the debate may be taken in a new direction and allow more focused study of the 

avian suprachiasmatic nucleus. 

 The work presented here focused on one central question:  where is the avian 

homolog to the mammalian SCN?  This question was addressed using classic methods 

previously employed in mammalian species, which leads one to wonder, what is the 

advantage of taking this approach in birds?  There are several developmental, 

organizational and functional properties of birds that make them a suitable model for 

circadian rhythms research.  First and foremost, their visual sense is more similar to that 

of humans than the nocturnal rodents that are primarily studied in mammalian circadian 

literature.  Most bird species are diurnal and rely upon cone-mediate color vision in light 
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conditions, as do humans, rather than relying upon rod-dominated vision, as do nocturnal 

rodents (Bowmaker et al., 1997).  Second, whereas the desire to perform genetic studies 

once precluded the use of an avian model, techniques have been developed to allow such 

experimentation.  Third, functionally the avian circadian system provides a rare ability to 

study multiple oscillatory structures individually and as a unit.  Single structures may be 

lesioned or removed in order to assess the effect on the system as a whole.  Further, the 

pineal and retinae may be easily maintained as either whole organ or dispersed cell 

cultures, allowing a multitude of in vitro studies to study specific clock functions unique 

to these pacemakers.  While the vSCN has been successfully maintained in a slice 

culture (Juss et al., 1994), there have been no reported cultures of the mSCN.  The 

further development of SCN culture systems remains an intriguing possibility.  Finally, 

avian species provide us with a unique opportunity to conduct developmental studies by 

performing invasive procedures on embryos, an ability that was utilized in Chapter V.  

Intravitreal injection of pseudorabies virus Bartha in chicks at embryonic day 12 (E12) 

resulted in the retrograde label of the vSCN, via EWm, within 48 hours of injection.  

Previous studies failed to identify the embryonic vSCN until E15; however, by exploring 

a retrograde neuronal pathway, the vSCN was visible at E14.  The strength of the 

staining in the vSCN indicates that it may be visible even earlier in development.  This 

exciting finding demonstrates that a fundamental understanding of the avian circadian 

system may lead to valuable experiments that are not feasible in placental vertebrates. 

The results reported in Chapter II indicate that both the vSCN and mSCN are 

involved in the avian circadian system.  The vSCN displays both a daily and circadian 
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rhythm of 2DG uptake such that it is high during the day/subjective day, similar to the 

situation in the mammalian SCN (Schwartz and Gainer, 1977, Schwartz et al., 1980) and 

the sparrow vSCN (Cassone, 1988).  The amplitude of this rhythm is significantly 

decreased when birds are placed into constant darkness (DD), suggesting that light may 

directly regulate the vSCN.  Further, melatonin inhibits daytime uptake, which also 

occurs in the mammalian SCN (Cassone et al., 1988a) and the sparrow vSCN (Cassone 

and Brooks, 1991).  This result indicates that melatonin interacts with the vSCN, a 

consideration that is supported by the discoveries that 2[125I]iodomelatonin (IMEL), a 

melatonin agonist, binds strongly to the chick vSCN (Brooks and Cassone, 1992; 

Cassone et al., 1995; Rivkees et al., 1989) and that rhythmic melatonin administration to 

sparrows in DD entrains 2DG uptake in the vSCN (Lu and Cassone, 1993b).  

Interestingly, the mSCN displays a statistically significant circadian, but not daily, 

rhythm of 2DG uptake.  It is possible that this finding is indicative of a unique role of the 

mSCN in the circadian system.  Alternatively, given a larger sample size, the visible 

trend in daily mSCN 2DG uptake may be significant.  Uptake is not rhythmic in the 

sparrow mSCN (Cassone, 1988), which is different from the situation in chicks.  This 

finding suggests that there may be variability in the importance of these structures in 

different species of birds, similar to findings regarding the pineal and retinae.   

Our results further indicate that the circadian system is involved in the regulation 

of visual function at many levels of sensory integration.  All visual structures observed 

in the current study displayed rhythmic uptake of 2DG in LD conditions, while two—the 

optic tectum (TeO) and the nucleus of Edinger-Westphal (EW)—showed circadian 
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rhythmicity.  Metabolic activity is also rhythmic in visual structures of the house 

sparrow (Lu and Cassone, 1993b).  The observation that IMEL binding (Rivkees et al., 

1989; Cassone and Brooks, 1991; Cassone et al., 1995) and melatonin receptor mRNA 

expression (Reppert et al., 1995) are prevalent in chick visual system structures supports 

a role for the circadian system in the regulation of vision.   

Data in Chapter III demonstrate that both the mSCN and vSCN share common 

efferents and afferents with the mammalian SCN.  Indeed, the two structures together are 

more similar in their pattern of connectivity than either structure individually.  The 

mSCN efferents identified were more similar to those of the mammalian SCN than those 

of the vSCN.  First, efferents to the septal lateral nucleus (SL) and the lateral bed 

nucleus of the stria terminalis (nBSTL) are closely apposed to the ventral portion of the 

lateral ventricle, where the lateral septal organ (LSO), a putative encephalic 

photoreceptor, is located (Vigh-Teichmann et al., 1980; Silver et al., 1988; Kuenzel, 

1993; Li et al., 2004; Rathinam and Kuenzel, 2005).  Efferents to the hypothalamic 

paraventricular nucleus (PVN) not only bear striking similarity to mammalian SCN 

efferents to that same nucleus, but the caudal portion of that nucleus is also in close 

proximity to another putative encephalic photoreceptor, the periventricular organ (PVO).  

Efferents to the hypothalamic dorsomedial nucleus (DMN) are also apposed to PVO.  

Further, there is strong efferent input from mSCN to the habenula, which is associated 

with pineal gland function, suggesting a possible pathway for suprachiasmatic regulation 

of pineal function.  The vSCN has only one efferent connection in common with the 

mammalian SCN, and that is to the putative ventrolateral preoptic nucleus (VLPO) 
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homolog, which in mammals is responsible for sleep-wake regulation (Lu et al., 2000), 

and which was identified here on the basis of retinal input and GABA immunoreactivity.  

The vSCN also sends efferents to the medial part of the nucleus of Edinger-Westphal 

(EWm).  While this efferent has not been described in mammals, indirect evidence 

obtained by means of retrograde pseudorabies virus transsynaptic tracing via autonomic 

circuits to the eye indicates a connection between EW and the SCN.  Whether this 

connection is multisynaptic or direct is unknown (Pickard et al., 2002).  A direct 

neuronal efferent from vSCN to EWm has been well described (Gamlin et al., 1982) and 

functionally demonstrated (Fitzgerald et al., 1990; Reiner et al., 1990) in pigeons, where 

it is involved in regulation of choroidal blood flow.  Importantly, the efferent data 

suggest that the mSCN and vSCN communicate with one another bilaterally, 

bidirectionally and asymmetrically such that the mSCN receives more input from the 

vSCN than it sends back. This finding supports the contention that both structures are 

involved in the circadian system.  Finally, both the vSCN and mSCN send efferents to 

the perirotundal area, which is homologous to the mammalian intergeniculate leaflet 

(IGL).  The IGL is the only visually active efferent structure from the mammalian SCN.  

It is not, however, the only visual efferent of the mSCN or the vSCN.   

Those efferents that are dissimilar from mammalian SCN efferents support the 

hypothesis that the circadian system is involved in the regulation of visual function.  The 

mSCN sends efferents to a few structures associated with the tectofugal visual pathway, 

indicating a minor role in visual regulation.  The vSCN, on the other hand, sends 

abundant efferents to structures of the tectofugal, thalamofugal and accessory optic 
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visual pathways.  Functional data also support a role for the circadian system in visual 

regulation.  Tectal visually evoked potential and electroretinogram (ERG) parameters are 

rhythmic in pigeons (Wu et al., 2000) and, in chicks, ERG parameters display circadian 

rhythmicity (McGoogan and Cassone, 1999).    

The primary afferent to the mammalian SCN is the retinohypothalamic tract, 

which arises from retinal ganglion cells (RGCs) that are distributed throughout both 

retinae (Pickard, 1982).  In contrast, the chick RHT is completely contralateral, 

terminating as a dense field in the vSCN and sending a sparse projection to the mSCN , 

which contains relatively few terminal fibers.  The RGCs that give rise to the chick 

retinohypothalamic tract (RHT) are located within the dorsal region of the retinae, in 

stark contrast to the situation in mammals.  This finding is interesting in light of some 

efferent data: vSCN efferents to the optic tectum, which is homologous to the 

mammalian superior colliculus, are localized in its ventral aspect.  Because RGCs 

specifically from the dorsal retina project the ventral superficial gray and fiber layer of 

the optic tectum (SGFS), one may speculate that, as has been demonstrated in mammals 

(Morin et al., 2003), retinohypothalamic fibers bifurcate, sending light information to 

both the vSCN and SGFS.  Evidence of retinopetal cells in the vSCN was also found in 

this study; however, the pigments in the retinae created too much background 

illumination under dark field to identify any terminal fibers after anterograde tracer 

injection into the vSCN, prohibiting verification of the projection.  More study is 

required to validate this finding, although it is appealing to speculate that the vSCN 

plays a role in the modulation of its own input. 
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As was the case with efferents, the afferents of the mSCN and vSCN are more 

numerous than those of the mammalian SCN.  The mSCN has several afferent structures 

in common with the mammalian SCN, including SL.  nBSTL, DMN and the medial 

mammillary nucleus are also afferent to the mSCN and, while they are not mammalian 

SCN afferents, they are interesting because they represent putative pathways through 

which encephalic photoreceptors (EPRs) may send light information to the mSCN.  The 

vSCN has several afferents in common with the mammalian SCN, including the 

ventrolateral geniculate nucleus (GLv), homologous to the mammalian lateral geniculate 

nucleus, which is the origin of the geniculohypothalamic tract (GHT) that terminates in 

the mammalian SCN (Card and Moore, 1982, 1989; Moore et al., 1984; Harrington et 

al., 1985; Moore and Speh, 1993; Moore and Card, 1994).  This connection was 

confirmed by a CTB injection to the GLv, which labeled afferent fibers to the vSCN.  

Other visual structures in the pretectum are afferent to both the vSCN and the 

mammalian SCN, as is SGFS.  As was found with its efferents, many vSCN afferents are 

visually active.  These data indicate that the visual system may also modulate the 

circadian system.  Both the vSCN and mSCN share afferents to several hypothalamic 

nuclei, including PVN, also a mammalian afferent, the caudal region of which is in close 

proximity to PVO.  Finally, afferent data verified the existence of bilateral and 

bidirectional communication between the mSCN and vSCN.  These pathways are 

asymmetrical in that the mSCN sends less information to vSCN than it receives.  While 

the particulars of this association are dissimilar from the relationship between the 

mammalian SCN core and shell, in which the core sends efferents to the shell, while the 
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shell does not reciprocate (Abrahamson and Moore, 2001; Leak and Moore, 2001; 

Kriegsfeld et al., 2004), the overall design is reminiscent of the situation in rodents. 

Together, the vSCN and mSCN are very similar in their synaptic connections to 

the mammalian SCN.  Further, there is significant overlap in their interconnections, as 

has been shown with the core and shell of the mammalian SCN.  It is important to note 

that, with the exception of a few of these connections, the efferents and afferents 

identified in these studies have not been confirmed by reciprocal injection into each 

structure.  While it is possible to construct hypotheses from these findings, careful study 

is necessary in order to draw conclusions specific to each structure. 

  The data presented here, when taken into the context of what is known from the 

literature about the mSCN and vSCN, allowed the development of a working model of 

the avian suprachiasmatic nucleus (Fig. 27).  According to this model, there are three 

inputs for light to the avian suprachiasmatic nucleus.  The first is via the RHT to the 

vSCN, which has been identified in this document and many others, and, to a lesser 

degree, the mSCN, which has also been reported to receive retinal input in a variety of 

avian species.  The second is the GHT, which was identified and confirmed here.  

Studies to verify the functional identity of this connection must be performed to 

substantiate this claim.  The third input for light, and the most speculative portion of the 

model, is the transduction of light information via the EPRs to the mSCN.  In the quail 

mSCN, per2 expression is typically low at night.  Birds whose eyes had been covered 

with opaque rubber caps were given a one-hour pulse of light in the middle of the night.  

This light pulse induced per2 expression in the mSCN at a time when it would not 
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Fig. 27. A current working model of the avian SCN.  This model addresses input 
pathways of light to the avian SCN and summarizes what we hypothesize are the roles of 
the vSCN and mSCN in the circadian system.  Solid lines represent connections 
supported by data in this document or in the literature.   The dashed line represents a 
speculative multisynaptic pathway.  New to this model is the addition of the PVN and its 
various interconnections with vSCN and mSCN.  For abbreviations, see list. 
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normally be present, indicating the activation of a light input pathway outside of the 

optic nerve and, thus, the RHT (Yoshimura et al., 2001).  In order to verify this 

connection between EPRs and the mSCN, several experiments are necessary.  First, 

injection of retrograde tracer to mSCN afferents in close proximity to putative EPRs may 

identify photoreceptor cells, identifying another afferent in this putative multisynaptic 

pathway.  Second, double label of projections in this putative pathway for opsins would 

provide supporting evidence for a role in light transmission.  Finally, by lesioning 

putative EPRs and repeating the experiments of Yoshimura et al. (2001), one could seek 

direct evidence of a link between them and the mSCN. 

The central components to the working model of the avian SCN are the vSCN 

and the mSCN, which communicate bilaterally and bidirectionally (Chapter III).  

Previous studies have indicated a variety of functions for these structures.  Based on 

lesioning data, I propose that the mSCN is responsible for the circadian regulation of 

body temperature and locomotor activity rhythms (Ebihara et al., 1987; Yoshimura et al., 

2001).  Data presented here indicate that the vSCN and mSCN both play a role in the 

regulation of visual system structures, with the vSCN being most influential.  This 

hypothesis is supported by data from our laboratory, as described previously.  I further 

hypothesize that the vSCN is involved in regulation of choroidal blood flow.  This is 

based on a sparse efferent projection to EWm that indicates a connection similar to a 

demonatrated efferent in pigeons.  The vSCN regulates EWm, which in turn affects 

choroidal blood flow via the parasympathetic ciliary ganglion (Gamlin et al., 1982; 

Fitzgerald et al., 1990; Reiner et al., 1990).  Data in Chapter V support this hypothesis, 
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as well.  The vSCN was infected within 48 hours of injection with pseudorabies virus 

Bartha, and was the most extensively infected structure, with the exception of the 

nucleus of Edinger-Westphal.  The mSCN was not infected until 88 hours post-injection, 

indicating that it is not directly involved in the regulation of ocular physiology.   Finally, 

it has been shown that lesions of the vSCN abolish norepinephrine turnover in the pineal 

gland, (Cassone et al., 1990) which affects melatonin biosynthesis.  Pineal melatonin 

then has many downstream effects.  As was described earlier, melatonin influences 

glucose metabolism in the vSCN.  Melatonin also influences locomotor activity and 

body temperature rhythms, as was discussed in Chapter I. 

Data in Chapter IV indicates that neither the vSCN nor the mSCN are 

organizationally identical to the mammalian SCN, although the vSCN is similar in many 

aspects.  Cytoarchitectural studies revealed that the mSCN is smaller in diameter and 

rostrocaudally shorter than the mammalian SCN.  Further, its location on the preoptic 

recess of the third ventricle corresponds only to a region of the mammalian SCN, called 

the preoptic suprachiasmatic nucleus (Palkovitz & Brownstein, 1988).  Autoradiographic 

detection of tritiated proline indicated that there are no retinal terminals in the mSCN.  

Further, the mSCN is dissimilar from the mammalian SCN chemoarchitecturally.  It 

contains small, tightly packed cells and fibers, many of which stain positive for antigens 

not found in the mammalian SCN.  Those antigens that are common between the 

mammalian SCN and the mSCN are not organized within the borders of the mSCN.  The 

exception to this finding is gastrin releasing peptide (GRP), which defines the mSCN 

well and is not found within the chick vSCN.  In contrast, GRP is found in the vSCN of 
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the house sparrow and in the mammalian SCN, suggesting that perhaps GRP serves 

variable functions among species or that the mSCN and vSCN are somewhat different in 

their arrangement, as has been found between rodents and marsupials (Cassone et al., 

1988b).  

The chick vSCN is organizationally similar to the sparrow vSCN, and bears 

much more similarity to the mammalian SCN than does the mSCN.  The chick vSCN is 

more lateral and caudal in the hypothalamus than the mSCN and the mammalian SCN.  

Rostrocaudally, the length of the vSCN is comparable to that of the mammalian SCN.  

However, the vSCN has a larger mean diameter and total volume than the rat SCN.  This 

finding is consistent with the overall larger size of the chick brain.  Retinohypothalamic 

tracing confirmed that the vSCN is defined by visual input, which fills the structure.  

Chemoarchitecturally, the vSCN contains a heterogeneous population of cells and fibers 

in or bordering the nucleus that stain for most antigens found in the mammalian SCN.  

Antigens absent in the mammalian SCN were also not found in the chick vSCN.   

Based on chemoarchitectural data, as well as the efferent and afferent data 

obtained previously, one may hypothesize that the hypothalamic paraventricular nucleus 

(PVN) is part of a circuit with the vSCN and mSCN.  PVN stands out because of a 

substantial vasopressin (AVP) immunoreactive fiber plexus that appears to connect it to 

the dorsal region of the vSCN.  It has been shown in rodents that the SCN projects to 

PVN via AVP fibers (Leak and Moore, 2001; Abrahamson and Moore, 2001).  In 

contrast, the projection observed in the chick appears to originate in PVN itself, as it 

contains a dense population of AVP immunoreactive cells, whereas the vSCN includes 
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only sparse AVP neurons insufficient for the formation of such a plexus.  Interestingly, 

AVP immunoreactive cells are present in the mSCN.  It is therefore likely that 

suprachiasmatic input to PVN arises from these cells in the mSCN, while the presence of 

AVP immunoreactive fibers in the mSCN and vSCN suggest that PVN efferents 

terminate in both of these structures.  This hypothesis is supported by retrograde and 

anterograde tract tracing data from Chapter III and may be seen schematically in the 

working model of the avian SCN (Fig. 27).  Injection of anterograde and retrograde 

tracers into the PVN as a part of overall verification of efferents and afferents identified 

in Chapter III would substantiate this hypothesis.  Further, lesion of PVN or, more 

specifically, severing the fiber plexus between PVN and vSCN, would allow the 

observation of behavioral outputs and, thus, the collection of functional data that may 

indicate the purpose of this circuit. 

Finally, we hypothesize that the astrocytic bridge, identified 

immunohistochemically on horizontal sections, plays a role in modulation of the 

suprachiasmatic nuclei.  No neuronal connection was found within the same plane of 

section, suggesting that the astrocytic bridge is an active structure with a specific 

function.  Most studies regarding suprachiasmatic astrocytes have been performed in 

rodent studies and they have indicated a possible role for astrocytes in the circadian 

system.  In mammals, GFA is expressed rhythmically in the SCN (Lavialle and Serviere, 

1993) and GFA expression may be inhibited by enucleation (Lavialle et al., 2001) or by 

placing a rodent in constant darkness (Ikeda et al., 2003).  These data indicate that light 

modulates astrocyte morphology.  Functionally, astrocytes send local signals within the 
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SCN in the form of intercellular calcium waves, presumably via gap junctions (van den 

Pol et al., 1992).  In a dispersed SCN cell culture, it was found that astrocytes, and not 

neurons, are gap junctionally coupled (Welsh and Reppert, 1996).  In vivo, inhibition of 

glial metabolism in the SCN leads to behavioral arrhythmicity, while in vitro, it has been 

demonstrated that blockade of gap junctional communication may either phase delay or 

abolish rhythmic neuronal activity (Prosser et al., 1994).  It is important to note, 

however, that more recent studies have indicated that SCN neurons are indeed gap 

junctionally coupled (cf. Colwell, 2005) and, therefore, this arrhythmicity could be due 

to disruption of both neuronal and astrocytic communication.  The body of work in 

rodent species has led researchers to the conclusion that SCN astrocytes play some role 

in the synchronization of rhythms in the mammalian SCN as a whole; however, this role 

is not well defined and is likely part of a complex system of interactions that result in the 

formation of a coordinated signal from the SCN. 

The working model of the avian suprachiasmatic nucleus states (Fig. 27) that the 

astrocytic bridge plays a modulatory role in the suprachiasmatic complex.  While 

astrocytes specifically located in the suprachiasmatic region have not been studied 

functionally, experiments in our laboratory have focused on astrocyte cultures from the 

chick diencephalon, which includes the suprachiasmatic region.  It has been discovered 

that these diencephalic astrocytes are gap junctionally coupled and that they send signals 

via intercellular calcium waves (Peters et al., 2005), similar to the situation in mammals.  

These astrocytes have melatonin receptors, and are affected by melatonin administration.  

First, melatonin application to an astrocytic culture increases resting intracellular 
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calcium levels.  Second, melatonin enhances the transmission of intercellular calcium 

waves by increasing the distance they spread.  Third, melatonin administration results in 

decreased gap junctional coupling among diencephalic astrocytes (Peters et al., 2005).  

This finding is exactly the opposite of what one would expect to find, given the 

enhanced spread of calcium waves, and may be explained in one of three ways:  1) a 

functional switch occurs under melatonin administration that results in alternative 

mechanisms of calcium wave spread, 2) the waves are still spread via gap junctions and 

melatonin increases the efficiency with which the remaining gap junctions are capable of 

passing calcium or 3) this is an in vitro phenomenon that will not translate to in vivo 

studies.  It is therefore likely that the astrocytic bridge is modulated by melatonin.  This 

contention is supported by the identification of melatonin receptors on diencephalic 

astrocytes in culture (Peters et al., 2005).  Further, data from our lab indicate that glucose 

metabolism in cultured diencephalic chick astrocytes may be entrained by melatonin 

cycles (Adachi et al., 2002, Peters et al, unpublished data).  Melatonin administration 

cycles, however, fail to establish rhythms in clock gene expression (Peters et al., 

unpublished data).  Clock genes, however, are entrained by environmental light cycles, 

indicating that diencephalic astrocytes have some photoreceptive capability.  Light 

cycles are not capable of entraining glucose uptake (Peters et al., unpublished data), 

indicating differential regulation of diencephalic astrocyte function by at least melatonin 

and light.  Given the current data, it is not possible to ascribe a particular function to the 

astrocytic bridge.   
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In order to address the role of the astrocytic bridge in avian suprachiasmatic 

complex, I suggest a multi-layered study utilizing a thick slice culture preparation.  

Using a cultured horizontal slice containing the mSCN, vSCN and astrocytic bridge, it 

would be possible to measure the electrophysiological properties of all three structures 

and to determine their interaction through a series of stimulation paradigms.  Another 

technique that would be possible with such a preparation would be the study of gap 

junctional coupling within the astrocytic bridge itself.  By loading dye into astrocytes in 

one portion of the structure and then stimulating those cells, it would be possible to 

compare the degree of coupling between astrocytes within the bridge to coupling 

elsewhere in the hypothalamus.  The effects of melatonin on this coupling could be 

observed easily in such a preparation.  In vivo, it would be interesting to determine 

whether lesion of either the vSCN or mSCN results in dissolution of the astrocytic 

bridge.  Such studies would not only provide important information about astrocytes in 

the avian SCN, but the results could also have implications about the vertebrate 

circadian system in general. 

As was discussed in Chapters III and IV, homology cannot yet be assigned to any 

one structure, or even to a group of structures.  Having stated this, it is likely that 

homology does, in fact, exist.  As has been indicated by others, it is unlikely that two 

systems with such similar components evolved in parallel from different ancestral 

precursors (cf. Menaker and Tosini, 1995).  Although much is known about the rodent 

SCN, relatively little is known about the mammalian SCN as a whole and little will 

continue to be known until studies increase their focus on non-rodent species.  It is 
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crucial to note that the studies that have been performed on non-eutherian species such 

as marsupials have indicated that the SCN is variable in its chemoarchitecture and the 

distribution of its retinal input, indicating variability within that taxon.  As such, multiple 

avian models must also be studied in order to classify the avian SCN.  Perhaps with a 

broader view of the vertebrate SCN, the differences that exist between birds and 

mammals would be no greater than the differences that exist within each taxon.  There 

are new and interesting findings regarding the chick SCN in the work presented here.  In 

combination with the data from the literature, a working model of the avian 

suprachiasmatic complex is now available from which to carefully design experiments, 

and the ability to expand that model to fit future data is limitless. 
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