198 research outputs found

    Patterns of variability of retinol levels in a harbour porpoise population from an unpolluted environment

    Get PDF
    Organochlorine compounds (OC) are known to induce vitamin A (retinoids) deficiency in mammals, which may be associated with impairment of immunocompetence, reproduction and growth. This makes retinoids a potentially useful biomarker of organochlorine impact on marine mammals. However, use of retinoids as a biomarker requires knowledge about its intrapopulation patterns of variation in natural conditions, information which is not currently available. We investigated these patterns in a cetacean population living in an unpolluted environment. 100 harbour porpoises Phocoena phocoena from West Greenland were sampled during the 1995 hunting season. Sex, age, morphometrics, nutritive condition, and retinol (following saponification) and OC levels in blubber were determined for each individual. OC levels found were extremely low and therefore considered unlikely to affect the population adversely: mean blubber concentrations, expressed on an extractable basis, were 2.04 (SD = 1.1) ppm for PCBs and 2.76 (SD = 1.66) ppm for tDDT. The mean blubber retinol concentration for the overall population was 59.66 (SD = 45.26) mu g g(-1). Taking into account the high contribution of blubber to body mass, blubber constitutes a significant body site for retinoid deposition in harbour porpoises. Retinol concentrations did not differ significantly between geographical regions or sexes, but they did correlate significantly (p <0.001) with age. Body condition, measured by determining the lipid content of the blubber, did not have a significant effect on retinol levels but the individuals examined were considered to be in an overall good nutritive condition. It is concluded that measurement of retinol concentrations in blubber samples is feasible and has a potential for use as a biomarker of organochlorine exposure in cetaceans. However, in order to do so, biological information, particularly age, is critical for the correct assessment of physiological impac

    Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context

    Get PDF
    Eukaryotic translation initiation involves preinitiation ribosomal complex 5′ -to-3′ directional probing of mRNA for codons suitable for starting protein synthesis. The recognition of codons as starts depends on the codon identity and on its immediate nucleotide context known as Kozak context. When the context is weak (i.e., nonoptimal), leaky scanning takes place during which a fraction of ribosomes continues the mRNA probing. We explored the relationship between the context of AUG codons annotated as starts of protein-coding sequences and the next AUG codon occurrence. We found that AUG codons downstream from weak starts occur in the same frame more frequently than downstream from strong starts. We suggest that evolutionary selection on in-frame AUGs downstream from weak start codons is driven by the advantage of the reduction of wasteful out-of-frame product synthesis and also by the advantage of producing multiple proteoforms from certain mRNAs. We confirmed translation initiation downstream from weak start codons using ribosome profiling data. We also tested translation of alternative start codons in 10 specific human genes using reporter constructs. In all tested cases, initiation at downstream start codons was more productive than at the annotated ones. In most cases, optimization of Kozak context did not completely abolish downstream initiation, and in the specific example of CMPK1 mRNA, the optimized start remained unproductive. Collectively, our work reveals previously uncharacterized forces shaping the evolution of protein-coding genes and points to the plurality of translation initiation and the existence of sequence features influencing start codon selection, other than Kozak context.Russian Science Foundation (RSF) 20-14-00121Science Foundation Ireland 210692/Z/18/ZScience Foundation Ireland 12/RC/2276_P2Erasmus+ ProgrammePlan Propio de Investigacion 2019 de la Universidad de GranadaMinistry of Economy of Spain DPI2017-84439-REuropean Union (EU) DPI2017-84439-

    Synthesis of a polymethyl(methacrylate)-polystyrene-based diblock copolymer containing biotin for selective protein nanopatterning

    Get PDF
    Protein patterning is of interest in high-throughput screening. Due to an increase in demand for further miniaturization of protein assays, block copolymers (BCPs) that can undergo large-area phase separation into nanometer-size domains have attracted great attention as substrates for protein nanopatterning. Here we report the synthesis of a polymethyl(methacrylate)-polystyrene-based diblock copolymer which, once spin-coated, is capable of self-segregating into cylindrical polystyrene (PS) domains. In this copolymer, the PS block was modified to introduce biotin below 10% molar in order to achieve molecular recognition of streptavidin. The PMMA matrix used to introduce poly(ethylene glycol) enabled us to obtain an antifouling environment that prevents unspecific protein adsorption outside the domains. The use of the biotin-streptavidin pair in this BCP makes it suitable for nanopatterning of other biotinylated proteins of interest for the purposes of cell biology, biosensors, and tissue engineering

    Antimicrobial evaluation of quinones and heterocyclic compounds against mycobacterium marinum, M. kansasii and M. abscessus

    Get PDF
    The resistance to antimicrobials and biocides observed in mycobacteria which do not cause tuberculosis (MNT) determines the necessity to develop drugs. The present study evaluated the activity of naphthoquinones and heterocyclic derivatives obtained from lapachol against Mycobacterium kansasii, M. marinum, and M. abscessus, through the REMA method. It was observed that lapachol was inactive against the three mycobateria species, while β-lapachone and nor-β-lapachone showed activity only against M. marinum. The most active substances for M. kansasii were the derivates 2, 3, 7, and 11, in which compound 2 (CMI = 0.96 μM) was the most active. For M. marinum, 2, 11, and 14 were the most active, while against M. abcessus the compound 3 was the only active. The results showed a wide and diversified resistance spectrum among the species studied, which could be related to the molecular structure and position of the substituting groups, indicating the potentiality of these molecules as antimicrobial prototypes.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Phenolic and furanic compounds of Portuguese chestnut and French, American and Portuguese oak wood chips

    Get PDF
    Botanical species used on aging process must be wisely and judiciously chosen, and for this selection, a basic knowledge of the chemical composition of woods is warranted. Aiming to contribute to extend the knowledge of the chemical composition of several wood species useful for enological purposes, we have focused our studies on Portuguese chestnut and French, American and Portuguese oak chips. The profile of low molecular weight phenolic composition of these chips was achieved, using an optimized extraction method based on pressurized liquid extraction, followed by the quantification of phenolic acids, phenolic aldehydes and furanic derivatives by high-performance liquid chromatography (HPLC-DAD). The identification of those compounds was also confirmed by LC-DAD/ESI-MS. This study allowed the determination of the low molecular phenolic composition of Portuguese chestnut and French, American and Portuguese oak wood. According to our results, the influence of the botanical species seems to be more relevant than the geographic origin of the wood species

    A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and <it>in silico </it>methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of <it>Arabidopsis</it>. This involves extracting a self-contained flavonoid subnetwork from the AraCyc database and calculating feasible metabolic routes or elementary modes (EMs) for it. Those EMs leading to anthocyanin compounds are taken to constitute the anthocyanin biosynthetic pathway (ABP) and their interplay with the rest of the EMs is used to study the minimal cut sets (MCSs), which are different combinations of reactions to block for eliminating colour pigmentation. By relating the reactions to their corresponding genes, the MCSs are used to explore the phenotypic roles of the ABP genes, their relevance to the ABP and the impact their eliminations would have on other processes in the cell.</p> <p>Results</p> <p>Simulation and prediction results of the effect of different MCSs for eliminating colour pigmentation correspond with existing experimental observations. Two examples are: i) two MCSs which require the simultaneous suppression of genes DFR and ANS to eliminate colour pigmentation, correspond to observational results of the same genes being co-regulated for eliminating floral pigmentation in <it>Aquilegia </it>and; ii) the impact of another MCS requiring CHS suppression, corresponds to findings where the suppression of the early gene CHS eliminated nearly all flavonoids but did not affect the production of volatile benzenoids responsible for floral scent.</p> <p>Conclusions</p> <p>From the various MCSs identified for eliminating colour pigmentation, several correlate to existing experimental observations, indicating that different MCSs are suitable for different plants, different cells, and different conditions and could also be related to regulatory genes. Being able to correlate the predictions with experimental results gives credence to the use of these mathematical and <it>in silico </it>analyses methods in the design of experiments. The methods could be used to prioritize target enzymes for different objectives to achieve desired outcomes, especially for less understood pathways.</p
    corecore