5 research outputs found

    Pheromone-Dependent Destruction of the Tec1 Transcription Factor Is Required for MAP Kinase Signaling Specificity in Yeast

    Get PDF
    AbstractThe yeast MAPK pathways required for mating versus filamentous growth share multiple components yet specify distinct programs. The mating-specific MAPK, Fus3, prevents crosstalk between the two pathways by unknown mechanisms. Here we show that pheromone signaling induces Fus3-dependent degradation of Tec1, the transcription factor specific to the filamentation pathway. Degradation requires Fus3 kinase activity and a MAPK phosphorylation site in Tec1 at threonine 273. Fus3 associates with Tec1 in unstimulated cells, and active Fus3 phosphorylates Tec1 on T273 in vitro. Destruction of Tec1 requires the F box protein Dia2 (Digs-into-agar-2), and Cdc53, the Cullin of SCF (Skp1-Cdc53-F box) ubiquitin ligases. Notably, mutation of the phosphoacceptor site in Tec1, deletion of FUS3, or deletion of DIA2 results in a loss of signaling specificity such that pheromone pathway signaling erroneously activates filamentation pathway gene expression and invasive growth. Signal-induced destruction of a transcription factor for a competing pathway provides a mechanism for signaling specificity

    Correspondence. Human Proteinpedia enables sharing of human protein data

    No full text
    4 page(s

    Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis.

    Get PDF
    BACKGROUND: The extent to which adult height, a biomarker of the interplay of genetic endowment and early-life experiences, is related to risk of chronic diseases in adulthood is uncertain. METHODS: We calculated hazard ratios (HRs) for height, assessed in increments of 6.5 cm, using individual-participant data on 174374 deaths or major non-fatal vascular outcomes recorded among 1085949 people in 121 prospective studies. RESULTS: For people born between 1900 and 1960, mean adult height increased 0.5-1 cm with each successive decade of birth. After adjustment for age, sex, smoking and year of birth, HRs per 6.5 cm greater height were 0.97 (95% confidence interval: 0.96-0.99) for death from any cause, 0.94 (0.93-0.96) for death from vascular causes, 1.04 (1.03-1.06) for death from cancer and 0.92 (0.90-0.94) for death from other causes. Height was negatively associated with death from coronary disease, stroke subtypes, heart failure, stomach and oral cancers, chronic obstructive pulmonary disease, mental disorders, liver disease and external causes. In contrast, height was positively associated with death from ruptured aortic aneurysm, pulmonary embolism, melanoma and cancers of the pancreas, endocrine and nervous systems, ovary, breast, prostate, colorectum, blood and lung. HRs per 6.5 cm greater height ranged from 1.26 (1.12-1.42) for risk of melanoma death to 0.84 (0.80-0.89) for risk of death from chronic obstructive pulmonary disease. HRs were not appreciably altered after further adjustment for adiposity, blood pressure, lipids, inflammation biomarkers, diabetes mellitus, alcohol consumption or socio-economic indicators. CONCLUSION: Adult height has directionally opposing relationships with risk of death from several different major causes of chronic diseases
    corecore