94 research outputs found

    Automated Meter Reading and SCADA Application for Wireless Sensor Network

    Get PDF
    Currently, there are many technologies available to automate public utilities services (water, gas and electricity). AMR, Automated Meter Reading, and SCADA, Supervisory Control and Data Acquisition, are the main functions that these technologies must support. In this paper, we propose a low cost network with a similar architecture to a static ad-hoc sensor network based on low power and unlicensed radio. Topological parameters for this network are analyzed to obtain optimal performances and to derive a pseudo-range criterion to create an application-specific spanning tree for polling optimization purposes. In application layer services, we analytically study different polling schemes

    SIR: A New Wireless Sensor Network Routing Protocol Based on Artificial Intelligence

    Get PDF
    Currently, Wireless Sensor Networks (WSNs) are formed by hundreds of low energy and low cost micro-electro-mechanical systems. Routing and low power consumption have become important research issues to interconnect this kind of networks. However, conventional Quality of Service routing models, are not suitable for ad hoc sensor networks, due to the dynamic nature of such systems. This paper introduces a new QoS-driven routing algorithm, named SIR: Sensor Intelligence Routing. We have designed an artificial neural network based on Kohonen self organizing features map. Every node implements this artificial neural network forming a distributed intelligence and ubiquitous computing system

    Giving neurons to sensors. QoS management in wireless sensors networks

    Get PDF
    Public utilities services (gas, water and electricity) have been traditionally automated with several technologies. The main functions that these technologies must support are AMR, Automated Meter Reading, and SCADA, Supervisory Control And Data Acquisition. Most meter manufacturers provide devices with Bluetoothr or ZigBeeTM communication features. This characteristic has allowed the inclusion of wireless sensor networks (WSN) in these systems. Once WSNs have appeared in such a scenario, real-time AMR and SCADA applications can be developed with low cost. Data must be routed from every meter to a base station. This paper describes the use of a novel QoS-driven routing algorithm, named SIR: Sensor Intelligence Routing, over a network of meters. An arti cial neural network is introduced in every node to manage the routes that data have to follow. The resulting system is named Intelligent Wireless Sensor Network (IWSN)

    IMPORTANCIA DE LA ALFABETIZACIÓN TECNOLÓGICA EN DOCENTES UNIVERSITARIOSDE CORONEL OVIEDO EN EL AÑO 2008

    Get PDF
    El objetivo dentro de la investigación es conocer la importancia de la utilización de medios tecnológicos aplicados por los docentes universitarios en el proceso de enseñanza-aprendizaje, utilizando un enfoque cuali-cuantitativo, no experimental, descriptivo, transeccional, basado en la metodología referencial de Roberto Hernández Sampieri. Los datos fueron tomados por muestreo a través de guías de entrevistas con preguntas abiertas y cerradas, buscando respuestas a interrogantes sobre el uso de medios audiovisuales y tecnologías actuales, como computador, proyector, internet, intranet, biblioteca virtual, foro virtual, chat, etc. Se recurrió a un total de 150 docentes y 840 alumnos, tomados como muestra de 500 docentes y 2.800 alumnos respectivamente. Con respecto a los resultados y conclusiones el 70 % de docentes de la muestra no utilizan computadoras, proyectores, internet para desarrollar sus clases; el 40 % está alfabetizado en el primer nivel y el 20 % en el segundo; otro 40 % emplea las nuevas tecnologías solamente para informarse, sin aplicarlo al aula. Por último un 8,33% apuesta a la formación continua, profesional y/o virtual siguiendo cursos de capacitación y actualización en el área investigada

    Giving Neurons to Sensors: An Approach to QoS Management Through Artificial Intelligence in Wireless Networks

    Get PDF
    For the latest ten years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, selforganizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore the performance of two very well known routing paradigms, directed diffusion and Energy-Aware Routing, and our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    A new QoS routing algorithm based on self-organizing maps for wireless sensor networks

    Get PDF
    For the past ten years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore and compare the performance of two very well known routing paradigms, directed diffusion and Energy- Aware Routing, with our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    Using artificial intelligence in routing schemes for wireless networks

    Get PDF
    For the latest 10 years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore the performance of two very well-known routing paradigms, directed diffusion and Energy-Aware Routing, and our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    Using Artificial Intelligence in Wireless Sensor Routing Protocols

    Get PDF
    This paper represents a dissertation about how an artificial intelligence technique can be applied to wireless sensor networks. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded in these kind of networks. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore the performance of two very well known routing paradigms, directed diffusion and Energy-Aware Routing, and our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    Poster Abstract: Practical issues in image acquisition and transmission over wireless sensor network

    Get PDF
    Multimedia data have become an important objective in wireless sensor networks. Due to the node resource constraints (energy consumption, memory capacity, network latency and throughput) the incorporation of image sensor at the nodes is currently a challenge. In this paper, we study different node architectures, evaluating processing time, energy consumption, image quality and data delivery issues. The study shows that a specialized image co-processor is an optimal solutionJUnta de Andalucía P07-TIC-0247
    corecore