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Abstract— Public utilities services (gas, water and electricity)
have been traditionally automated with several technologies. The
main functions that these technologies must support are AMR,
Automated Meter Reading, and SCADA, Supervisory Control
And Data Acquisition. Most meter manufacturers provide devices
with Bluetoothr or ZigBeeTM communication features. This char-
acteristic has allowed the inclusion of wireless sensor networks
(WSN) in these systems. Once WSNs have appeared in such
a scenario, real-time AMR and SCADA applications can be
developed with low cost. Data must be routed from every meter to
a base station. This paper describes the use of a novel QoS-driven
routing algorithm, named SIR: Sensor Intelligence Routing, over
a network of meters. An artificial neural network is introduced
in every node to manage the routes that data have to follow. The
resulting system is named Intelligent Wireless Sensor Network
(IWSN).

Keywords: Wireless sensor networks (WSN); Ad hoc net-
works, Quality of service (QoS); Artificial neural networks
(ANN); Routing; Self-Organizing Map (SOM), ubiquitous
computing.

I. INTRODUCTION

Wireless sensor networks (WSNs) contain hundreds or thou-
sands of sensors nodes. Due to the sensor features (low-power
consumption, low radio range, low memory, low processing
capacity, and low cost), self-organizing network is the best
suitable network architecture to support applications in such
a scenario. Goals like efficient energy management [1], high
reliability and availability, communication security, and robust-
ness have become very important issues to be considered.

Our research group, Computer Science for Industrial Ap-
plications, from the University of Seville, is working on the
development of protocols and system architectures on Wireless
Sensor Networks to support Supervisory Control and Data
Acquisition (SCADA) applications. We present in this paper a
new routing algorithm which introduces artificial intelligence
(AI) techniques to measure the QoS supported by the network.

This paper is organized as follows. In section II, we relate
the main routing features we should consider in a network
communication system. A description of the defined network
topology is given. Section III introduces the use of neural
networks in sensors for determining the quality of neighbor-
hood links, giving a QoS model for routing protocols. The
performance of the use of this technique in existing routing
protocols for sensor networks is evaluated by simulation in
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Fig. 1. Event transmission from a source to a sink.

section IV. Concluding remarks and future works are given
on section V.

II. DESIGNING THE NETWORK TOPOLOGY

The WSN architecture as a whole has to take into account
different aspects, such as the protocol architecture; Quality-of-
Service, dependability, redundancy and imprecision in sensor
readings; addressing structures, scalability and energy re-
quirements; geographic and data-centric addressing structures;
aggregating data techniques; integration of WSNs into larger
networks, bridging different communication protocols; etc.

Acknowledging the impact that route selection will have on
network lifetime, we would like to determine route selection
in conjunction with the sensor schedule. In general, the routes
should be chosen so that nodes that are more critical for use as
sensors are routed around as often as possible. In this section,
we model this scenario in which sensors are working, and in
section III we formalize the routing algorithm, SIR, proposed
to solve this problem.

We consider a random distribution of sensors, as depicted
in figure 1. Every node has a radio transmitter power and a
radio receiver sensibility, which defines an average radio range.
Using minimum-transmission-energy routing protocol, nodes
route data to the base station through intermediate nodes. Thus
nodes act as routers for others nodes’ data. The problem is how
to elect intermediate nodes, in which the final objective es to
minimize the global energy consumption.

In general, routing in WSNs can be divided into flat-
based routing , hierarchical-base routing, and location-based
routing. In this paper we study networks where all nodes
are supposed to be assigned equal roles or functionalities. In
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this sense, flat-based routing is best suited for this kind of
networks.

Among all the existing flat routing protocols, we have
chosen directed diffusion [2] and Energy-Aware Routing (EAR)
[3] to evaluate the influence of the use of AI techniques.

III. INTRODUCING NEURONS IN SENSOR NODES

The necessity of connectivity among nodes introduces the
routing problem. In a WSN we need a multi-hop scheme to
travel from a source to a destiny. The paths the packets have to
follow can be established based on a specific criterion. Possible
criteria can be minimum number of hops, minimum latency,
maximum data rate, minimum error rate, etc. For example,
imagine that all the nodes desire to have a path to route data
to a base station. In this situation, the problem is solved by
the network backbone formation.

Our approach to enhance this solution is based on the
introduction of artificial intelligence techniques in the WSNs.

A. Network backbone formation

This problem has been studied in mathematics as a par-
ticular discipline called Graph Theory, which studies the
properties of graphs.

We propose a modification on Dijkstra’s algorithm to form
the network backbone, with the minimum cost paths from the
base station or root, r, to every node in the network. We have
named this algorithm Sensor Intelligence Routing, SIR.

B. Quality of Service in Wireless Sensor Networks

Once the backbone formation algorithm is designed, a way
of measuring the edge weight parameter, wij , must be defined.
On a first approach we can assume that wij can be modelled
with the number of hops. According to this assumption,
wij = 1 ∀ i, j ∈ R, i 6= j. However, imagine that we have
another scenario in which the node vj is located in a noisy
environment. The collisions over vj can introduce link failures
increasing power consumption and decreasing reliability in this
area. In this case, the optimal path from node vk to the root
node can be p′, instead of p. It is necessary to modify wij to
solve this problem. The evaluation of the QoS in a specific
area can be used to modify this parameter.

The traditional view of QoS in communication networks is
concerned with end-to-end delay, packet loss, delay variation
and throughput. However, other performance-related features,
such as network reliability, availability, communication secu-
rity and robustness are often neglected in QoS research.

We use a QoS definition based on three types of QoS
parameters: timeliness, precision and accuracy. Due to the
distributed feature of sensor networks, our approach measures
the QoS level in a spread way, instead of an end-to-end
paradigm. Each node tests every neighbor link quality with
the transmissions of a specific packet named ping. With these
transmissions every node obtains mean values of latency, error
rate, duty cycle and throughput. These are the four metrics we
have defined to measure the related QoS parameters.

Once a node, vi, has tested a neighbor link QoS, qos, it
calculates the distance to the root, through node vj , using the
obtained QoS value, d(vi) = d(vj) · qos.

qos is a variable whose value is obtained as an output of a
neural network. This tool is described in section III-C.

C. SOM: Self Organizing Map

One of the most powerful mechanism developed in AI is
the Self-Organizing Map (SOM) model, created by Teuvo
Kohonen in 1982, at the University of Helsinky, Finland.

SOM is an unsupervised neural network. The neurons are
organized in an unidirectional two layers architecture. The first
one is the input or sensorial layer, formed by m neurons,
one per each input variable. These neurons work as buffers
distributing the information sensed in the input space. The
input is formed by stochastic samples x(t) ∈ R

m from the
sensorial space. The second layer is usually formed by a
rectangular grid with nxxn′y neurons. Each neuron (i, j) is
represented by an m-dimensional weight or reference vector
called synapsis, w

′

ij = [w′

ij1, w
′

ij2, . . . , w
′

ijm], where m is
the dimension of the input vector x(t). The neurons in the
output layer -also known as the competitive Kohonen layer-
are fully connected to the neurons in the input layer, meaning
that every neuron in the input layer is linked to every neuron
in the Kohonen layer. In SOM we can distinguish two phases:

Learning phase:
In this phase, neurons from the second layer compete for

the privilege of learning among each other, while the correct
answer(s) is (are) not known.

This phase is executed in a central data processing unit (e.g.
offline processing).

Execution phase:
The weights are declared fixed.
First, every neuron (i, j) calculates the similarity between

the input vector x(t), {xk | 1 ≤ k ≤ m} and its own synaptic-
weight-vector w

′

ij . This function of similarity is based on a
predefined similarity criterion.

Next, it is declared a winning neuron, g = (g1, g2), with a
synaptic-weight-vector, w

′

g
, similar to the input x. This phase

is implemented in every node as a C++ function.
SOM gives an output denoted by qos. This value is returned

by a function Θ defined by the SOM user, according to its
aims. Θ depends on the winning neuron: qos = Θ (g). In
section IV-B we define this function.

This phase is executed in every node (e.g. online process-
ing).

IV. PERFORMANCE EVALUATION BY SIMULATION

Due to the desire to evaluate the SIR performance, we
have created two simulation experiments running on our
wireless sensor network simulator OLIMPO [4]. Every node
in OLIMPO implements a neural network (SOM) running the
execution phase detailed in section IV-B. We have focused
our simulation on a wireless sensor network composed by 250
nodes.



A. Noise influence

Noise influence over a node has been modelled as an
Additive Gaussian White Noise, (AWGN), originating at the
source resistance feeding the receiver.

To evaluate the effect of noise we have defined a node
state declared as failure. When the BER goes down below
a required value (typically 10−3) we assume this node has
gone to a failure state. We measure this metric as a percentage
of the total lifetime of a node. In section IV we describe
two experiments according to different percentages of node
failures.

B. SOM creation

Our SOM has a first layer formed by four input neurons,
corresponding with every metric defined in section III-B
(latency, throughput, error rate and duty cycle); and a second
layer formed by twelve output neurons forming a 3x4 matrix.

Next, we detail our SOM implementation process.
Learning phase:
In order to organize the neurons in a two dimensional map,

we need a set of input samples x(t)=[latency(t), throughput(t),
error-rate(t), duty-cycle(t)]. This samples should consider all
the QoS environments in which a communication link between
a pair of sensor nodes can work. In this sense, we have to
simulate special ubiquitous computing environments. These
scenarios can be implemented by different noise and data
traffic simulations. In our research we create several WSNs
over OLIMPO with 250 nodes and different levels of data
traffic. The procedure to measure every QoS link between two
neighbors is detailed as follows: every pair of nodes (eg. vi

and vj) is exposed to a level of noise. This noise is introduced
increasing the noise power density No in the radio channel
in the proximity of a determined node. Hence, the signal-to-
noise ratio at the detector input of this selected node decreases
and consequently the BER related with its links with every
neighbor gets worse.

In order to measure the QoS metrics related with every No,
we run a ping application between a selected pair of nodes
(eg. vi and vj). Node vi sends periodically a ping message to
node vj . Because the ping requires acknowledgment (ACK),
the way node vi receives this ACK determines a specific QoS
environment, expressed on the four metrics elected: latency
(seconds), throughput (bits/sec), error rate (%) and duty cy-
cle(%). This process is repeated 100 times with different No

and d. This way, we obtain a set of samples which characterize
every QoS scenario.

With this information, we construct a self-organizing map
using a high performance neural network tool. This process
is called training, and uses the learning algorithm detailed in
section III-C. Because the training is not implemented by the
wireless sensor network, we have called this process offline
processing.

The following phase is considered as the most difficult one.
The samples allocated in the SOM form groups, in such a way
that all the samples in a group have similar characteristics
(latency, throughput, error rate and duty cycle). This way,
we obtain a map formed by clusters, where every cluster

corresponds with a specific QoS and is assigned a neuron
of the output layer. Furthermore, a synaptic-weight matrix
w

′

ij = [w′

ij1, w
′

ij2, . . . , w
′

ij4] is formed, where every synapsis
identifies a connection between input and output layer.

In order to quantify the QoS level, we study the features
of every cluster and, according to the QoS obtained in the
samples allocated in the cluster, we assign a value between
0 and 10. As a consequence, e define an output function
Θ(i, j), i ∈ [1, 3], j ∈ [1, 4] with twelve values corresponding
with every neuron (i, j), i ∈ [1, 3], j ∈ [1, 4]. The highest
assignment (10) must correspond to that scenario in which
the link measured has the worst QoS predicted. On the other
hand, the lowest assignment (0) corresponds to that scenario
in which the link measured has the best QoS predicted. The
assignment is supervised by an engineer during the offline
processing.

Execution phase:
As a consequence of the learning phase, we have declared

an output function, that has to be run in every sensor node.
This procedure is named the wining neuron election algorithm.

In the execution phase, we create a WSN with 250 nodes.
Every sensor node measures the QoS periodically running a
ping application with every neighbor, which determines an
input sample. After a node has collected a set of input samples,
it runs the wining neuron election algorithm. After the winning
neuron is elected, the node uses the output function Θ to
assign a QoS estimation, qos. Finally, this value is employed
to modify the distance to the root. Because the execution phase
is implemented by the wireless sensor network, we have called
this process online processing.

C. Evaluating SIR performance

Our SIR algorithm has been evaluated by the realization of
two experiments detailed as follows.

Experiment #1: No node failure.
The purpose of this experiment is to evaluate the introduc-

tion of AI techniques in a scenario were there is no node
failure. This means that no node has gone to a failure state
because of noise, collision or battery fail influence.

To simulate this scenario, a wireless sensor network with
250 nodes is created on our simulator OLIMPO. Node # 0
is declare as a sink and node # 22 is declared as a source.
At a specific time, an event (eg. an alarm) is provoked in the
source. Consequently, the problem now is how to route the
event from the specified source to the declared sink.

As detailed in section II we solve this problem with three
different routing paradigms: SIR, directed diffusion and EAR.
We choose two metrics to analyze the performance of SIR and
to compare it to others schemes. These metrics are the average
dissipated energy and the average delay.

Average dissipated energy. This metric computes the av-
erage work done by a node a in delivering useful tracking
information to the sinks. This metric also indicates the overall
lifetime of sensor nodes.

Due to transmission distance from a sensor node to the base
station is large on a global scale, the transmission energy is
much more higher than the received energy. In this network
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Fig. 2. Average latency and average dissipated energy in a scenario with no
simultaneous node failure.

topology, as detailed in section II, the most energy-efficient
protocol is the minimum-transmission-energy.

Average Delay. This metric measures the average one-way
latency observed between transmitting an event and receiving
it at each sink.

We study these metrics as a function of sensor network size.
The results are shown in figure 2.

Experiment #2: 20 % simultaneous node failures.
The purpose of this experiment is to evaluate the introduc-

tion of AI techniques in a scenario where there is a 20 % of
simultaneous node failures. This means that at any instant, 20
% of the nodes in the network are unusable because of noise,
collision or battery failure influence.

In these scenario we analyze the problem studied described
in experiment #1 with the three paradigms related. The results
are shown in figure 3.

V. CONCLUSION AND FUTURE WORKS

After comparing the results obtained with every routing
paradigm, we can conclude that the differences are important
when there is a significant percentage of node failures. Thus,
while the average delay goes up with the number of sensors
in directed diffusion and EAR, it maintains a low level of
delay in SIR. The cause of this effect can be found in the fact
that while directed diffusion and EAR elect the intermediate
nodes using rules based on the propagation of the interest, SIR
elects the intermediate nodes running an AI-algorithm. Thus,
the path created by SIR avoids the election of intermediate
nodes that are prone to failure because of battery draining,
interference or noisy environment. Furthermore, the average
dissipated energy is less in SIR when the number of nodes in
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Fig. 3. Average latency and average dissipated energy in a scenario with 20
% simultaneous node failures.

the sensor goes up. We again find the reason in the effect
of the election of the intermediate nodes in SIR. The use
of AI in every sensor dynamically varies the assignment of
this node role, distributing the energy consumption through
the network. When the number of nodes is increased, the
number of possible paths is increased too. Furthermore, when
the percentage of node failures goes up (from 20 % to 40
%) SIR becomes the best suited protocol for these kinds of
scenarios. However, although the computational payment for
implementing the neural network in a sensor is inapreciable,
as detailed in section IV-B, the tradeoff associated with this
implementation is the increase of the overhead.

The inclusion of AI techniques (e.g. neural networks) in
wireless sensor networks has been proved to be an useful tool
to improve network performances.
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