14 research outputs found

    Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature

    Get PDF
    Defects in cerebrospinal fluid (CSF) flow may contribute to idiopathic scoliosis. However, the mechanisms underlying detection of CSF flow in the central canal of the spinal cord are unknown. Here we demonstrate that CSF flows bidirectionally along the antero-posterior axis in the central canal of zebrafish embryos. In the cfap298tm304 mutant, reduction of cilia motility slows transport posteriorly down the central canal and abolishes spontaneous activity of CSF-contacting neurons (CSF-cNs). Loss of the sensory Pkd2l1 channel nearly abolishes CSF-cN calcium activity and single channel opening. Recording from isolated CSFcNs in vitro, we show that CSF-cNs are mechanosensory and require Pkd2l1 to respond to pressure. Additionally, adult pkd2l1 mutant zebrafish develop an exaggerated spine curvature, reminiscent of kyphosis in humans. These results indicate that CSF-cNs are mechanosensory cells whose Pkd2l1-driven spontaneous activity reflects CSF flow in vivo. Furthermore, Pkd2l1 in CSF-cNs contributes to maintenance of natural curvature of the spine

    Régulations par la microglie de la dynamique des récepteurs aux neurotransmetteurs inhibiteurs dans les synapses de moelle épinière

    No full text
    Whereas synapses are relatively stable structures, their molecular constituents are continuously recycled and exchanged in time and space. Each of the molecules that contribute to build synaptic structures is renewed with specific kinetics, depending on their organisation in the postsynaptic densities. The compatibility between a dynamic behaviour and a long-term maintenance of synapses implies to think synapses as multi-molecular assemblies in a dynamic equilibrium. Several parameters can influence the dynamics of receptors to neurotransmitters(RNT) at synaptic sites, including neuronal activity and extracellular matrix proteins. However,the role of glial cells in this mechanism is unknown. During my thesis work, I explored the roleof microglia, the resident immune cells of the central nervous system, on the lateral diffusion ofRNT and synaptic efficacy at spinal cord inhibitory postsynaptic densities. My work demonstrates for the first time a partnership between microglia and synapses. It shows that immune cells can take part to the regulation of synaptic strength very rapidly but also at basal state, by regulating RNT dynamics. Furthermore it identifies microglia as a key partner for a heterocellular stabilization of synaptic receptors. This work raises the intriguing possibility that the general regulation of network activity may also be explained by a fine modulation of receptors stability at the synapse controlled by microglia.Alors que les synapses sont des structures relativement stables, les éléments qui la composent sont, eux, en permanent échange dans le temps et dans l'espace. Les composants des densités postsynaptiques sont renouvelés avec des cinétiques caractéristiques de chaque molécule et de chaque sous compartiment synaptique. La compatibilité entre le comportement dynamique des composants de la synapse et son maintien structural et fonctionnel à long terme implique une conception de ces assemblages multimoléculaires en équilibre dynamique. De nombreux paramètres peuvent influencer la dynamique des récepteurs aux neurotransmetteurs (RNT) dans les synapses, y compris l'activité synaptique et les protéines de la matrice extracellulaire. Cependant, le rôle des cellules gliales dans ce mécanisme est inconnu. Mon travail de thèse a porté sur l'exploration d'une possible contribution de la microglie, les cellules immunitaires du système nerveux central, à la stabilité des RNT et à l'efficacité des synapses inhibitrices de la moelle épinière. Mon travail de thèse démontre pour la première fois comment et en quoi la microglie est un partenaire clé de l'équilibre dynamique qui régit la structure et la fonction de la synapse inhibitrice dans la moelle. Par conséquent, il donne un éclairage nouveau sur la façon de concevoir l'efficacité synaptique et sa régulation de façon non neurone autonome

    Regulations of receptors to inhibitory neurotransmitters dynamics by microglia in spinal cord synapses

    No full text
    Alors que les synapses sont des structures relativement stables, les éléments qui la composent sont, eux, en permanent échange dans le temps et dans l'espace. Les composants des densités postsynaptiques sont renouvelés avec des cinétiques caractéristiques de chaque molécule et de chaque sous compartiment synaptique. La compatibilité entre le comportement dynamique des composants de la synapse et son maintien structural et fonctionnel à long terme implique une conception de ces assemblages multimoléculaires en équilibre dynamique. De nombreux paramètres peuvent influencer la dynamique des récepteurs aux neurotransmetteurs (RNT) dans les synapses, y compris l'activité synaptique et les protéines de la matrice extracellulaire. Cependant, le rôle des cellules gliales dans ce mécanisme est inconnu. Mon travail de thèse a porté sur l'exploration d'une possible contribution de la microglie, les cellules immunitaires du système nerveux central, à la stabilité des RNT et à l'efficacité des synapses inhibitrices de la moelle épinière. Mon travail de thèse démontre pour la première fois comment et en quoi la microglie est un partenaire clé de l'équilibre dynamique qui régit la structure et la fonction de la synapse inhibitrice dans la moelle. Par conséquent, il donne un éclairage nouveau sur la façon de concevoir l'efficacité synaptique et sa régulation de façon non neurone autonome.Whereas synapses are relatively stable structures, their molecular constituents are continuously recycled and exchanged in time and space. Each of the molecules that contribute to build synaptic structures is renewed with specific kinetics, depending on their organisation in the postsynaptic densities. The compatibility between a dynamic behaviour and a long-term maintenance of synapses implies to think synapses as multi-molecular assemblies in a dynamic equilibrium. Several parameters can influence the dynamics of receptors to neurotransmitters(RNT) at synaptic sites, including neuronal activity and extracellular matrix proteins. However,the role of glial cells in this mechanism is unknown. During my thesis work, I explored the roleof microglia, the resident immune cells of the central nervous system, on the lateral diffusion ofRNT and synaptic efficacy at spinal cord inhibitory postsynaptic densities. My work demonstrates for the first time a partnership between microglia and synapses. It shows that immune cells can take part to the regulation of synaptic strength very rapidly but also at basal state, by regulating RNT dynamics. Furthermore it identifies microglia as a key partner for a heterocellular stabilization of synaptic receptors. This work raises the intriguing possibility that the general regulation of network activity may also be explained by a fine modulation of receptors stability at the synapse controlled by microglia

    Automated Analysis of Cerebrospinal Fluid Flow and Motile Cilia Properties in The Central Canal of Zebrafish Embryos

    No full text
    International audienceCirculation of cerebrospinal fluid (CSF) plays an important role during development. In zebrafish embryo, the flow of CSF has been found to be bidirectional in the central canal of the spinal cord. In order to compare conditions and genetic mutants across each other, we recently automated the quantification of the velocity profile of exogenous fluorescent particles in the CSF. We demonstrated that the beating of motile and tilted cilia localized on the ventral side of the central canal was sufficient to generate locally such bidirectionality. Our approach can easily be extended to characterize CSF flow in various genetic mutants. We provide here a detailed protocol and a user interface program to quantify CSF dynamics. In order to interpret potential changes in CSF flow profiles, we provide additional tools to measure the central canal diameter, characterize cilia dynamics and compare experimental data with our theoretical model in order to estimate the impact of cilia in generating a volume force in the central canal. Our approach can also be of use for measuring particle velocity in vivo and modeling flow in diverse biological solutions

    The orthopedic characterization of cfap298tm304 mutants validate zebrafish to faithfully model human AIS

    No full text
    International audienceCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298 tm304. The zebrafish mutant line cfap298 tm304 , exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298 tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298 tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient's diagnosis

    Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development

    No full text
    International audienceThe cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF

    SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation

    No full text
    Abstract Reissner’s fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry

    The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid

    No full text
    The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber’s cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF’s heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons

    Origin and role of the cerebrospinal fluid bidirectional flow in the central canal

    Get PDF
    Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth

    Origin and role of the cerebrospinal fluid bidirectional flow in the central canal

    Get PDF
    International audienceCirculation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth
    corecore