207 research outputs found

    High accuracy Raman measurements using the Stokes and anti-Stokes lines

    Get PDF
    We show that by measuring the separation between the Stokes and anti-Stokes peaks excited by two different laser lines we obtain a very precise determination of absolute phonon energies. The method is useful for measuring small changes of these energies with strain, temperature, laser power, etc. It doubles the changes and avoids the necessity of using the reference lines in the Raman spectra. The method can be applied for the determination of phonon deformation potentials, for the characterization of strained heteroepitaxial layers, and for micro-Raman analysis of strain in silicon integrated circuits. We give examples of phonon shifts in Si, Ge, GaAs, InAs, and GaP as a function of applied biaxial strain, laser power, and [email protected] ; [email protected]

    Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy

    Get PDF
    The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily relies on error-dependent motor learning mechanisms, its role during motor skill learning, a behavior that likely involves errordependent as well as reinforcement and strategic mechanisms, is not completely understood. Here, in humans, we delivered cerebellar tDCS to modulate its activity during novel motor skill training over the course of 3 d and assessed gains during training (on-line effects), between days (off-line effects), and overall improvement. We found that excitatory anodal tDCS applied over the cerebellum increased skill learning relative to sham and cathodal tDCS specifically by increasing on-line rather than off-line learning. Moreover, the larger skill improvement in the anodal group was predominantly mediated by reductions in error rate rather than changes in movement time. These results have important implications for using cerebellar tDCS as an intervention to speed up motor skill acquisition and to improve motor skill accuracy, as well as to further our understanding of cerebellar function

    Surface acoustic Bloch oscillations, the Wannier-Stark ladder and Landau-Zener tunneling in a solid

    Get PDF
    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry

    Modulation of the electronic properties of GaN films by surface acoustic waves

    Get PDF
    We report on the interaction between photogenerated electron-hole pairs and surface acoustic waves (SAW) in GaN films grown on sapphire substrates. The spatial separation of photogenerated carriers by the piezoelectric field of the SAW is evidenced by the quenching of the photoluminescence (PL) intensity. The quenching levels in GaN are significantly smaller than those measured in GaAs under similar conditions. The latter is attributed to the lower exciton ionization efficiency and carrier separation probabilities mediated by the piezoelectric effect. The PL spectra also evidence energy shifts and broadenings of the electronic transitions, which are attributed to the band gap modulation by the SAW strain [email protected]

    Growth and optical characterization of indirect-gap AlxGa1−xAs alloys

    Get PDF
    Nonintentionally doped AlxGa1−xAs layers with 0.38 x 0.84 were grown on (100) GaAs substrates by liquid phase epitaxy (LPE) under near-equilibrium conditions. The crystalline quality of the samples was studied by photoluminescence at 2 K and room temperature Raman spectroscopy. The peculiar behavior in the photoluminescence intensities of the indirect bound exciton line and the donor–acceptor pair transition is explained from the evolution of the silicon donor binding energy according to the aluminum composition. It was also possible to observe the excitonic transition corresponding to the AlxGa1−xAs/GaAs interface, despite the disorder and other factors which are normally involved when growing high-aluminum-content layers by this technique. Furthermore, Raman measurements show the quadratic variations of longitudinal optical phonon frequencies with aluminum concentration in good agreement with previous experimental results. In this work we show that high quality indirect-gap AlxGa1−xAs samples can be grown by LPE under near-equilibrium [email protected]

    Trends in early childhood obesity in a large, urban school district in the Southwest from 2007 to 2014.

    Get PDF
    Presented at: Experimental Biology 2016; April 2-6, 2016; San Diego, CA.https://digitalrepository.unm.edu/prc-posters-presentations/1022/thumbnail.jp

    Tunable Interferometers Driven by Coherent Surface Acoustic Phonons

    Full text link
    [EN] We demonstrate a compact tunable photonic modulator driven by surface acoustic waves (SAWs) in the low GHz frequency range. The device follows a well-known Mach-Zehnder interferometer (MZI) structure with three output channels, built upon multi-mode interference (MMI) couplers. The light continuously switches paths between the central and the side channels, avoiding losses and granting a 180¿-dephasing synchronization between them. The modulator was monolithically fabricated on (Al,Ga)As, and can be used as a building block for more complex photonic functionalities. It can also be implemented in other material platforms such as Silicon or (In,Ga)P. Light modulated at multiples of the fundamental acoustic frequency can be accomplished by adjusting the applied acoustic power. An excellent agreement between theory and experiment is achievedCrespo-Poveda, A.; Hernández-Mínguez, A.; Biermann, K.; Tahraoui, A.; Gargallo-Jaquotot, B.; Muñoz, P.; Santos, P.... (2016). Tunable Interferometers Driven by Coherent Surface Acoustic Phonons. MRS Advances. 1651-1656. doi:10.1557/adv.2016.234S16511656Beck, M., de Lima, M. M., Wiebicke, E., Seidel, W., Hey, R., & Santos, P. V. (2007). Acousto-optical multiple interference switches. Applied Physics Letters, 91(6), 061118. doi:10.1063/1.2768889Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474De Lima, M. M., Beck, M., Hey, R., & Santos, P. V. (2006). Compact Mach-Zehnder acousto-optic modulator. Applied Physics Letters, 89(12), 121104. doi:10.1063/1.2354411Crespo-Poveda, A., Hey, R., Biermann, K., Tahraoui, A., Santos, P. V., Gargallo, B., … de Lima, M. M. (2013). Synchronized photonic modulators driven by surface acoustic waves. Optics Express, 21(18), 21669. doi:10.1364/oe.21.021669Crespo-Poveda, A., Hernández-Mínguez, A., Gargallo, B., Biermann, K., Tahraoui, A., Santos, P. V., … de Lima, M. M. (2015). Acoustically driven arrayed waveguide grating. Optics Express, 23(16), 21213. doi:10.1364/oe.23.021213Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S., & Watts, M. R. (2013). Large-scale nanophotonic phased array. Nature, 493(7431), 195-199. doi:10.1038/nature1172

    Residual strain effects on the two-dimensional electron gas concentration of AlGaN/GaN heterostructures

    Get PDF
    Ga-face AlGaN/GaN heterostructures with different sheet carrier concentrations have been studied by photoluminescence and Raman spectroscopy. Compared to bulk GaN, an energy shift of the excitonic emission lines towards higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. This strain was confirmed by the shift of the E2 Raman line, from which biaxial compressive stresses ranging between 0.34 and 1.7 GPa were deduced. The spontaneous and piezoelectric polarizations for each layer of the heterostructures have been also calculated. The analysis of these quantities clarified the influence of the residual stress on the sheet electron concentration (ns). Possible causes for the discrepancies between the calculated and experimentally determined sheet carrier densities are briefly [email protected] ; [email protected]
    corecore