527 research outputs found

    Probing the AGN Unification Model at redshift z \sim 3 with MUSE observations of giant Lyα\alpha nebulae

    Full text link
    A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Lyα\alpha nebulae around AGNs at redshift z\sim3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Lyα\alpha nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances r>30r>30~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r\lesssim30 pkpc) and the associated high values of the HeII to Lyα\alpha ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Lyα\alpha nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood

    Full text link
    The radio-quiet quasar Q2059-360 at redshift z=3.08z=3.08 is known to be close to a small Lyman α\alpha blob (LAB) and to be absorbed by a proximate damped Lyα\alpha (PDLA) system. Here, we present the Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy follow-up of this quasi-stellar object (QSO). Our primary goal is to characterize this LAB in detail by mapping it both spatially and spectrally using the Lyα\alpha line, and by looking for high-ionization lines to constrain the emission mechanism. Combining the high sensitivity of the MUSE integral field spectrograph mounted on the Yepun telescope at ESO-VLT with the natural coronagraph provided by the PDLA, we map the LAB down to the QSO position, after robust subtraction of QSO light in the spectral domain. In addition to confirming earlier results for the small bright component of the LAB, we unveil a faint filamentary emission protruding to the south over about 80 pkpc (physical kpc); this results in a total size of about 120 pkpc. We derive the velocity field of the LAB (assuming no transfer effects) and map the Lyα\alpha line width. Upper limits are set to the flux of the N V λ12381242\lambda 1238-1242, C IV λ15481551\lambda 1548-1551, He II λ1640\lambda 1640, and C III] λ15481551\lambda 1548-1551 lines. We have discovered two probable Lyα\alpha emitters at the same redshift as the LAB and at projected distances of 265 kpc and 207 kpc from the QSO; their Lyα\alpha luminosities might well be enhanced by the QSO radiation. We also find an emission line galaxy at z=0.33z=0.33 near the line of sight to the QSO. This LAB shares the same general characteristics as the 17 others surrounding radio-quiet QSOs presented previously. However, there are indications that it may be centered on the PDLA galaxy rather than on the QSO.Comment: Accepted for publication in Astronomy & Astrophysics; 16 pages, 19 figure

    Galaxy Formation with local photoionisation feedback I. Methods

    Full text link
    We present a first study of the effect of local photoionising radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionising radiation from young and old stellar populations. The method computes the effect of multiple radiative sources using the same tree algorithm used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionisation feedback through the whole history of a galaxy`s formation. The simulation of a Milky Way like galaxy using the local photoionisation model forms ~ 40 % less stars than a simulation that only includes a standard uniform background UV field. The local photoionisation model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionising sources is significant and should not be ignored in models of galaxy formation.Comment: Accepted for Publication in MNRAS, 13 pages, 13 figure

    No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641

    Get PDF
    We present optical and near-infrared imaging of the field of the z = 7.0842 quasar ULAS J112001.48+064124.3 taken with the Hubble Space Telescope. We use these data to search for galaxies that may be physically associated with the quasar, using the Lyman break technique, and find three such objects, although the detection of one in Spitzer Space Telescope imaging strongly suggests it lies at z ∼ 2. This is consistent with the field luminosity function and indicates that there is no excess of >L★ galaxies within 1 Mpc of the quasar. A detection of the quasar shortwards of the Lyα line is consistent with the previously observed evolution of the intergalactic medium at z > 5.5.SC acknowledges support from the NSF grant AST-1010004 and NASA HST grant GO-13033.06-A, RJM acknowledges ERC funding via the award of a consolidator grant, and BV has been supported by the ERC grant ‘Cosmic Dawn’.This is the final published version. It originally appeared in MNRAS at http://www.mnras.org/content/442/4/3454.full

    First Results from Viper: Detection of Small-Scale Anisotropy at 40 GHZ

    Get PDF
    Results of a search for small-scale anisotropy in the cosmic microwave background (CMB) are presented. Observations were made at the South Pole using the Viper telescope, with a .26 degree (FWHM) beam and a passband centered at 40 GHz. Anisotropy band-power measurements in bands centered at l = 108, 173, 237, 263, 422 and 589 are reported. Statistically significant anisotropy is detected in all bands.Comment: 5 pages, 4 figures, uses emulateapj.sty, submitted to ApJ Letter

    Politics versus Policies: Fourth Wave Feminist Critiques of Higher Education’s Response to Sexual Violence

    Get PDF
    This article uses the lens of fourth wave feminism to examine media accounts of institutional and student responses in two cases of sexual violence at institutions of higher education. Competing discourses reveal a disconnect between what institutions say they do and students’ actual experiences of the institutional handling of sexual violence cases. When policies, actions, and values are not fully aligned, institutions of higher education are unable to respond to societal and institutional injustices. Hence, recommendations for better alignment between institutional values and actions are proposed

    Possible Signatures of a Cold-Flow Disk from MUSE using a z=1 galaxy--quasar pair towards SDSSJ1422-0001

    Get PDF
    We use a background quasar to detect the presence of circum-galactic gas around a z=0.91z=0.91 low-mass star forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the VLT show that the host galaxy has a dust-corrected star-formation rate (SFR) of 4.7±\pm0.2 Msun/yr, with no companion down to 0.22 Msun/yr (5 σ\sigma) within 240 kpc (30"). Using a high-resolution spectrum (UVES) of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle α\alpha of only 1515^\circ), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a "cold flow disk" extending at least 12 kpc (3×R1/23\times R_{1/2}). We estimate the mass accretion rate M˙in\dot M_{\rm in} to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the HI column density of logNHI20.4\log N_{\rm HI} \simeq 20.4 obtained from a {\it HST}/COS NUV spectrum. From a detailed analysis of the low-ionization lines (e.g. ZnII, CrII, TiII, MnII, SiII), the accreting material appears to be enriched to about 0.4 ZZ_\odot (albeit with large uncertainties: logZ/Z=0.4 ± 0.4\log Z/Z_\odot=-0.4~\pm~0.4), which is comparable to the galaxy metallicity (12+logO/H=8.7±0.212+\log \rm O/H=8.7\pm0.2), implying a large recycling fraction from past outflows. Blue-shifted MgII and FeII absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The MgII and FeII doublet ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent FeII* emission.Comment: 17 pages, 11 figures, in press (ApJ), minor edits after the proofs. Data available at http://muse-vlt.eu/science/j1422
    corecore