9,048 research outputs found

    Bioclimatology, structure, and conservation perspectives of Quercus pyrenaica, Acer opalus subsp. Granatensis, and Corylus avellana deciduous forests on Mediterranean bioclimate in the South-Central part of the Iberian Peninsula

    Get PDF
    The plant variability in the southern Iberian Peninsula consists of around 3500 different taxa due to its high bioclimatic, geographic, and geological diversity. The deciduous forests in the southern Iberian Peninsula are located in regions with topographies and specific bioclimatic conditions that allow for the survival of taxa that are typical of cooler and wetter bioclimatic regions and therefore represent the relict evidence of colder and more humid paleoclimatic conditions. The floristic composition of 421 samples of deciduous forests in the south-central part of the Iberian Peninsula were analyzed. The ecological importance index (IVI) was calculated, where the most important tree species were Quercuspyrenaica, Aceropalus subsp. Granatensis, and Corylusavellana. These species are uncommon in the south-central part of the Iberian Peninsula, forming forests of little extension. An analysis of the vertical distribution of the species (stratum) shows that the majority of the species of stratum 3 (hemicriptophics, camephytes, geophites, and nanophanerophytes) are characteristic of deciduous forests, and their presence is positively correlated with high values of bioclimatic variables related to humidity and presence of water in the soil (nemoral environments), while they are negatively correlated with high values of bioclimatic variables related to high temperatures, evapotranspiration, and aridity. This work demonstrates that several characteristic deciduous forest taxa are more vulnerable to disappearance due to the loss of their nemoral conditions caused by gaps in the tree or shrub canopy. These gaps lead to an increase in evapotranspiration, excess insolation, and a consequent loss of water and humidity in the microclimatic conditions.info:eu-repo/semantics/publishedVersio

    Quantitation of Scanning Electron Microscopic Urinary Cytology

    Get PDF
    Using scanning electron microscopy (SEM), differences in cell surface morphology are identifiable between normal urothelium and malignant urothelia including the presence of pleomorphic microvilli (PMV). PMV have been reported in carcinomas of the urinary bladder, and they appear early in the pathogenesis of these tumors in animal models. Preliminary studies in our laboratory and others\u27 demonstrated similar changes in tissue and cytologic specimens from patients with bladder cancer. We observed and evaluated normal and neoplastic cells of the human bladder by SEM in a preliminary assessment of surface topography with regard to tumor growth, grade, and stage. However, while these SEM observations indicated that differences between normal and abnormal urothelia could be readily recognized, the distinction between the various types of atypical cells was not as clearly defined. Data collected so far indicates that changes in the surface topography of the exfoliated cells may possibly vary both in relation to tumor grade and stage. Based on these qualitative observations, we expanded our approach by using a computerized image analysis system directly interfaced with the SEM. The measurements which can be made include cell surface area, diameter, length, width, perimeter, orientation and number of PMV per unit area. Statistical analysis is also performed. The boundaries between cells are not recognizable by the system, making the single cells present in cytologic specimens ideal for evaluation. Uniform short microvilli are readily distinguished from PMV. Preliminary evaluation of 23 patients has distinguished specimens from malignant cases compared to patients with benign lesions

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic

    Long-time behavior of an angiogenesis model with flux at the tumor boundary

    Get PDF
    This paper deals with a nonlinear system of partial differential equations modeling a simplified tumor-induced angiogenesis taking into account only the interplay between tumor angiogenic factors and endothelial cells. Considered model assumes a nonlinear flux at the tumor boundary and a nonlinear chemotactic response. It is proved that the choice of some key parameters influences the long-time behaviour of the system. More precisely, we show the convergence of solutions to different semi-trivial stationary states for different range of parameters.Comment: 17 page

    Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells

    Get PDF
    A wide range of clinical applications in regenerative medicine were opened decades ago with the discovery of adult stem cells. Highly promising adult stem cells are mesenchymal stem/stromal cells derived from adipose tissue (ADSCs), primarily because of their abundance and accessibility. These cells have multipotent properties and have been used extensively to carry out autologous transplants. However, the biology of these cells is not entirely understood. Among other factors, the regeneration capacity of these cells will depend on both their capacity of proliferation/differentiation and the robustness of the biochemical pathways that allow them to survive under adverse conditions like those found in damaged tissues. The transcription factors, such as Nanog and Sox2, have been described as playing an important role in stem cell proliferation and differentiation. Also, the so-called longevity pathways, in which AMPK and SIRT1 proteins play a crucial role, are essential for cell homeostasis under stressful situations. These pathways act by inhibiting the translation through downregulation of elongation factor-2 (eEF2). In order to deepen knowledge of mesenchymal stem cell biology and which factors are determinant in the final therapeutic output, we evaluate in the present study the levels of all of these proteins in the ADSCs from humans and rats and how these levels are affected by aging and the oxidative environment. Due to the effect of aging and oxidative stress, our results suggest that before performing a cell therapy with ADSCs, several aspects reported in this study such as oxidative stress status and proliferation and differentiation capacity should be assessed on these cells. This would allow us to know the robustness of the transplanted cells and to predict the therapeutic result, especially in elder patients, where probably ADSCs do not carry out their biological functions in an optimal way

    Thermal Performance of the LHC Connection Cryostat

    Get PDF
    The 16 connection cryostats for the Large Hadron Collider (LHC) being built at CERN are designed to fill the gap existing between the dispersion suppressor zones and the standard arcs of the accelerator. The first connection cryostat was cold tested down to superfluid helium temperature in August 2005, and the measured thermal performance was as expected. This paper presents the test results and a new thermal modeling of the connection cryostat based on the measurement of the thermal resistances of the braids used for thermalisation, allowing the precise determination of cool down times and equilibrium temperatures of the shielding under various conditions such as lead heating

    GRB 130427A Afterglow: A Test for GRB Models

    Get PDF
    Gamma-ray Burst 130427A had the largest fluence for almost 30 years. With an isotropic energy output of 8.5×1053 erg and redshift of 0.34, it combined a very high energy release with a relative proximity to Earth in an unprecedented fashion. Sensitive X-ray facilities such as {\it XMM-Newton} and {\it Chandra} detected the afterglow of this event for a record-breaking baseline of 90 Ms. We show the X-ray light curve of GRB 130427A of this event over such an interval. The light curve shows an unbroken power law decay with a slope of α=1.31 over more than three decades in time. In this presentation, we investigate the consequences of this result for the scenarios proposed to interpret GRB 130427A and the implications in the context of the forward shock model (jet opening angle, energetics, surrounding medium). We also remark the chance of extending GRB afterglow observations for several hundreds of Ms with {\it Athena}
    corecore