8 research outputs found

    Synthesis, structural studies, and oxidation catalysis of the late-first-row-transition-metal complexes of a 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam

    Get PDF
    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, and Zn²⁺ cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni²⁺ complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn²⁺, Fe²⁺, and Cu²⁺ complexes identified the Mn²⁺ complex as a potential mild oxidation catalyst worthy of continued development

    Synthesis, structural studies, kinetic stability, and oxidation catalysis of the late first row transition metal complexes of 4,10-dimethyl-1,4,7,10-tetraazabicyclo[6.5.2]pentadecane

    No full text
    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni2+ complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn2+, Fe2+, and Cu2+ complexes identified the Mn2+ complex as a potential mild oxidation catalyst worthy of continued development

    Synthesis, structural studies, and oxidation catalysis of the manganese(II), iron(II), and copper(II) complexes of a 2-pyridylmethyl pendant armed side-bridged cyclam

    No full text
    The first 2-pyridylmethyl pendant armed structurally reinforced cyclam ligand has been synthesized and successfully complexed to Mn(2+), Fe(2+), and Cu(2+) cations. X-ray crystal structures were obtained for the diprotonated ligand and its Cu(2+) complex demonstrating pentadentate binding of the ligand with trans-II configuration of the side-bridged cyclam ring, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of these complexes were determined by means of solid state magnetic moment, with a low value of μ = 3.10 μ(B) for the Fe(2+) complex suggesting it has a trigonal bipyramidal coordination geometry, matching the crystal structure of the Cu(2+) complex, while the μ = 5.52 μ(B) value for the Mn(2+) complex suggests it is high spin octahedral. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all three complexes, suggesting catalytic reactivity involving electron transfer processes are possible for these complexes. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant identified the Fe(2+) complex as the oxidation catalysts most worthy of continued development

    Synthesis, Structural Studies, and Oxidation Catalysis of the Late-First-Row-Transition-Metal Complexes of a 2‑Pyridylmethyl Pendant-Armed Ethylene Cross-Bridged Cyclam

    No full text
    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, and Zn<sup>2+</sup> cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni<sup>2+</sup> complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper­(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn<sup>2+</sup>, Fe<sup>2+</sup>, and Cu<sup>2+</sup> complexes identified the Mn<sup>2+</sup> complex as a potential mild oxidation catalyst worthy of continued development

    Synthesis, Structural Studies, and Oxidation Catalysis of the Late-First-Row-Transition-Metal Complexes of a 2‑Pyridylmethyl Pendant-Armed Ethylene Cross-Bridged Cyclam

    No full text
    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>, and Zn<sup>2+</sup> cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni<sup>2+</sup> complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper­(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn<sup>2+</sup>, Fe<sup>2+</sup>, and Cu<sup>2+</sup> complexes identified the Mn<sup>2+</sup> complex as a potential mild oxidation catalyst worthy of continued development

    Earth Abundant Oxidation Catalysts for Removal of Contaminants of Emerging Concern from Wastewater: Homogeneous Catalytic Screening of Monomeric Complexes

    Get PDF
    Twenty novel Mn, Fe, and Cu complexes of ethylene cross-bridged tetraazamacrocycles with potentially copolymerizable allyl and benzyl pendant arms were synthesized and characterized. Multiple X-ray crystal structures demonstrate the cis-folded pseudo-octahedral geometry forced by the rigidifying ethylene cross-bridge and show that two cis coordination cites are available for interaction with substrate and oxidant. The Cu complexes were used to determine kinetic stability under harsh acidic and high-temperature conditions, which revealed that the cyclam-based ligands provide superior stabilization with half-lives of many minutes or even hours in 5 M HCl at 50–90 °C. Cyclic voltammetry studies of the Fe and Mn complexes reveal reversible redox processes indicating stabilization of Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ oxidation states, indicating the likelihood of catalytic oxidation for these complexes. Finally, dye-bleaching experiments with methylene blue, methyl orange, and rhodamine B demonstrate efficient catalytic decolorization and allow selection of the most successful monomeric catalysts for copolymerization to produce future heterogeneous water purification materials
    corecore