1,187 research outputs found

    A study of various methods for calculating locations of lightning events

    Get PDF
    This article reports on the results of numerical experiments on finding the location of lightning events using different numerical methods. The methods include linear least squares, nonlinear least squares, statistical estimations, cluster analysis and angular filters and combinations of such techniques. The experiments involved investigations of methods for excluding fake solutions which are solutions that appear to be reasonable but are in fact several kilometers distant from the actual location. Some of the conclusions derived from the study are that bad data produces fakes, that no fool-proof method of excluding fakes was found, that a short base-line interferometer under development at Kennedy Space Center to measure the direction cosines of an event shows promise as a filter for excluding fakes. The experiments generated a number of open questions, some of which are discussed at the end of the report

    Statistical estimation of locations of lightning events

    Get PDF
    In this paper, a statistical approach to the retrieval of lightning locations is proposed for the first time. This novel approach views the errors of the time measurements as random variables rather than unknown numbers. The unknown location (x, y, z) as well as the standard deviation a of the errors are treated as unknown parameters of a statistical model and are estimated using the maximum likelihood estimation (MLE) technique. On the basis of Monte Carlo simulations these statistical estimators are compared with the least squares estimators (LSE), as well as the solutions of the system of linear equations proposed by Koshak and Solakiewicz [1996]. Although the method is general, the Lightning Detection and Ranging (LDAR) system currently used at the Kennedy Space Center is chosen as a model for simulations. Simulations show that the MLE always gives better precision than the LSE technique. Also, it is demonstrated that if the time measurements are fairly accurate and a thunderstorm takes place in the neighborhood of the measuring sites (the distance is less than 80 km), the MLE significantly improves the accuracy of the solutions of the system of linear equations

    The use of permutation representations in structural computations in large finite matrix groups

    Get PDF
    We determine the minimal degree permutation representations of all finite groups with trivial soluble radical, and describe applications to structural computations in large finite matrix groups that use the output of the CompositionTree algorithm. We also describe how this output can be used to help find an effective base and strong generating set for such groups. We have implemented the resulting algorithms in Magma, and we report on their performance

    Linear and Nonlinear Responses to Northeasters Coupled with Sea Level Rise: A Tale of Two Bays

    Get PDF
    This study aimed at dissecting the influence of sea level rise (SLR) on storm responses in two bays in the Gulf of Maine through high-resolution, three-dimensional, hydrodynamic modeling. Saco Bay, an open bay characterized by gentle coastal slopes, provided a contrast to Casco Bay that has steep shorelines and is sheltered by barrier islands and peninsulas. The Finite-Volume Coastal Ocean Model (FVCOM) was implemented for Saco Bay and Casco Bay to simulate the February 1978 northeaster and an April freshwater discharge event in 2007 following the Patriots Day storm. Both events were repeatedly simulated under SLR scenarios ranging from 0 to 7 ft. Modeled storm responses were identified from the 1978 Blizzard simulations and were tracked across SLR scenarios. By comparing changes in inundation, storm currents, and salinity distribution between the two bays, freshwater discharge and bathymetric structure were isolated as two determining factors in how storm responses change with the rising sea level. The steplike bottom relief at the shoreline of Casco Bay sets up nonlinear responses to SLR. In contrast, storm responses in Saco Bay varied significantly with SLR due to alterations in river dynamics attributed to SLR-induced flooding

    Abundances on the Main Sequence of Omega Centauri

    Full text link
    Abundance ratios of carbon, nitrogen and strontium relative to iron, calculated using spectrum synthesis techniques, are given for a sample of main sequence and turnoff stars that belong to the globular cluster omega Centauri. The variations of carbon, nitrogen and/or strontium show several different abundance patterns as a function of [Fe/H]. The source of the enhancements/depletions in carbon, nitrogen and/or strontium may be enrichment from asymptotic giant branch stars of low (1--3 solar masses) and intermediate (3--8 solar masses) mass. Massive rotating stars which produce excess nitrogen without carbon and oxygen overabundances may also play a role. These abundances enable different contributors to be considered and incorporated into the evolutionary picture of omega Cen.Comment: 43 Pages, 13 Figures. Accepted for publication in Ap

    The M81 Group Dwarf Irregular Galaxy DDO 165. I. High Velocity Neutral Gas in a Post-Starburst System

    Full text link
    We present new multi-configuration VLA HI spectral line observations of the M81 group dIrr post-starburst galaxy DDO 165. The HI morphology is complex, with multiple column density peaks surrounding a large region of very low HI surface density that is offset from the center of the stellar distribution. The bulk of the neutral gas is associated with the southern section of the galaxy; a secondary peak in the north contains ~15% of the total HI mass. These components appear to be kinematically distinct, suggesting that either tidal processes or large-scale blowout have recently shaped the ISM of DDO 165. Using spatially-resolved position-velocity maps, we find multiple localized high-velocity gas features. Cross-correlating with radius-velocity analyses, we identify eight shell/hole structures in the ISM with a range of sizes (~400-900 pc) and expansion velocities (~7-11 km/s). These structures are compared with narrow- and broad-band imaging from KPNO and HST. Using the latter data, recent works have shown that DDO 165's previous "burst" phase was extended temporally (>1 Gyr). We thus interpret the high-velocity gas features, HI holes, and kinematically distinct components of the galaxy in the context of the immediate effects of "feedback" from recent star formation. In addition to creating HI holes and shells, extended star formation events are capable of creating localized high velocity motion of the surrounding interstellar material. A companion paper connects the energetics from the HI and HST data.Comment: The Astrophysical Journal, in press. Full-resolution version available on request from the first autho

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system
    corecore