Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/108208

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2018 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

CYOE0)

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/108208
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

The use of permutation representations in structural computations in
large finite matrix groups

John J. Cannon
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Derek F. Holt

Mathematics Institute, University of Warwick, Coventry CV4 TAL, UK

William R. Unger

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Abstract

We determine the minimal degree permutation representations of all finite groups with trivial
soluble radical, and describe applications to structural computations in large finite matrix groups
that use the output of the CompositionTree algorithm. We also describe how this output can be
used to help find an effective base and strong generating set for such groups. We have implemented
the resulting algorithms in Magma, and we report on their performance.

Keywords: Permutation representation, finite matrix group, structural computation

1. Introduction

The main theoretical result in this paper is the determination of the smallest degree of a faithful
permutation representation of any finite group that has no nontrivial soluble normal subgroups.
We were motivated to investigate this question by its applications to structural computations in
large finite matrix groups.

The paper [1] contains a detailed description of the CompositionTree algorithm for computing a
composition tree of a finite group G. A composition tree consists (roughly) of a composition series
of G together with some associated data. The algorithm is principally intended for the investigation
of large finite matrix groups G < GL(d, ¢), but it can also be applied to finite permutation groups.
The successful computation of a composition tree for G enables constructive membership testing
(that is, testing elements ¢ € GL(d, q) for membership of G and writing ¢ € G as words over
a specified generating set X of @), identifying the composition factors of G as abstract simple

Email addresses: j.cannon@sydney.edu.au (John J. Cannon), D.F.Holt@warwick.ac.uk (Derek F. Holt),
william.unger@sydney.edu.au (William R. Unger)
The authors acknowledge the support of Australian Research Council grant DP130104534

Preprint submitted to Journal of Symbolic Computation September 6, 2018

groups, and setting up constructive isomorphisms between the nonabelian composition factors and
their standard copies.

The paper [1] also contains descriptions of some applications of the output of CompositionTree,
including the computation of a chief series, the soluble radical, and Sylow subgroups of G. We shall
refer to structural computations in a matrix group G that use this output as CT-SR algorithms, since
they all make use of a certain chief series for G that passes through the soluble radical L of G. Many
of these algorithms can be rendered significantly more effective if a permutation representation
of G/L of reasonably small degree can be found, and we shall show how our theoretical result
mentioned above can be used in practice to compute effectively a permutation representation of
G/ L of smallest possible degree.

Prior to the availability of CompositionTree, almost all structural computations in finite matrix
groups were carried out, by default, using base and strong generator set (BSGS) data structures,
which were introduced originally by Sims [26] for computing in finite permutation groups. These
have been very effective in groups for which a BSGS with reasonably short basic orbits is readily
available. Some matrix groups, such as GL(d, ¢) for even moderately large d and ¢, have no such
BSGS. But there are many examples of large matrix groups in which a good BSGS exists but is
difficult to find. The other main topic of this paper is the description of a CT-SR algorithm that
uses the CompositionTree data together with a permutation representation of G/L to help in
the search for a good BSGS. This has turned out to be highly effective in a number of groups,
particularly in examples where both L and G/L are moderately large.

We also include a brief description of a number of new CT-SR algorithms, including the computation
of conjugacy classes, character tables, and subgroups of bounded index. These are essentially
routine applications of existing methods for use with the CompositionTree data (although their
implementation was often time-consuming).

CompositionTree has been implemented in Magma [3], as have our applications, which are all
available in releases V2.23 upwards.

A more theoretical treatment of computation in matrix groups over finite fields, which also in-
volves computing in the radical quotient G/L, is presented in [2]. A related but slightly different
approach to practical computation is described in [23], and the algorithms presented there have
been implemented in GAP [14] in the package recog [24]. Some of the methods that we describe
in this paper, including the use of a permutation representation of G/L for the computation of
conjugacy classes of G, have been implemented by Hulpke in recog, and are presented in [17].

The restriction of these methods to matrix groups over finite fields is not serious, because the
algorithms described in [12] allow us easily to map a finite subgroup of GL(d, K) for an infinite
field K to an isomorphic subgroup of GL(d, ¢) for a suitable g.

We prove our results about minimal degree permutation representations of groups with trivial
soluble radical in Section 2. Our CT-SR algorithm that attempts to find a useful BSGS is described
in Section 3.

The new CT-SR algorithms are described briefly in Section 4. Although they are based on existing
methods, we note that we are now able to routinely compute character tables of groups that have
been, until now, outside of the range of default general purpose methods, such as the subgroup G =
21122 Co, of the “Baby Monster” sporadic simple group, with G given as a subgroup of GL(1025, 2).
Our method for finding subgroups of bounded index includes a new feature (which is also useful
in calculations with permutation groups) that enables us to avoid unnecessary computations in
simple composition factors that do not themselves have any proper subgroups up to that index.

Finally, in Section 5, we report on the performance of our Magma implementations.

2. Computing a permutation representation of the radical quotient G/L

2.1. Calculating the minimal permutation degree: theory

For a finite group G, we define m(G) to be the smallest degree of a faithful permutation represen-
tation of G. Particularly when G is insoluble, a low degree permutation representation, if it exists,
is likely to be the most useful representation for carrying out effective structural computations in
G, and so calculating (or at least estimating) m(G) is important for this purpose. Our first aim in
this section is to determine m(G) for all finite groups G with trivial soluble radical. For general
finite groups G this problem appears to be significantly more difficult.

For a subgroup H < G, we recall that Coreg(H) is the smallest normal subgroup of G that is
contained in H, and H is said to be core-free in G if Coreq(H) = 1. If G is simple or, more
generally, if G has a unique minimal normal subgroup, then a minimal degree faithful permutation
representation of G is transitive, and m(G) is equal to the smallest index in G of a core-free
subgroup. In general, a minimal degree representation may be intransitive.

We have m(A,) = n for n > 5, and m(G) is known for all sporadic finite simple groups; see [10].
Based on the study of the maximal subgroups of the classical simple groups and of the exceptional
simple groups of Lie type in [18] (based on results in [11] and [25]) and [19], respectively, m(G) has
been determined for simple groups in these classes in a series of papers by Mazurov and Vasilyev
[20, 21, 28, 29, 30]. The results are presented in [15, Table 4]. So m(S) is known for all finite
simple groups S, and we observe that m(S) > 5 and m(S)? < |S| for all such S.

Lemma 2.1. Let G = x¥_|S; be a direct product of finite nonabelian simple groups S;, and let
m; = m(S;). Then:

(i) The smallest index of a core-free subgroup of G is Hle m;.

(ii) m(G) =S5 m;.

Proof. (i) We use induction on k. The result is clear for k¥ = 1, so suppose that k > 1. Each S;
has a subgroup H; of index m;, and x*_, H; is a core-free subgroup of G of index Hle m;. So we
need to prove that any core-free subgroup H of G has index at least Hle ms.

If the projection of H onto each \S; is a proper subgroup of S;, then this projection has index at least
m; in S;, and the result follows. Otherwise, H projects onto at least one of the S;, which we can
assume to be S;. Then HNS7 <51, and H core-free implies that H NS # S1,s0 HNS; = 1. Let
p and p’ be the projections of H onto S; and S} := x¥_,S;, respectively. So ker(p') = HNS; = 1.

If Im(p’) is core-free in S} then, by induction, Im(p’) has index at least Hf:z m; in S7 and index
at least |S1] Hf:z m; > Hle m; in G, and the result follows, since H 2 Im(p’).

Otherwise, C' := Coreg; (Im(p’)) is a nontrivial direct product of some of the S;. But, since H is
core-free in G, the kernel of p restricted to p'~1(C) is trivial. But, since p'~(C) < H, we have
p(p'~HC))Qp(H) = S1, s0 p(p'~1(C)) = S;. Hence C must be equal to one of the S;, say C' = S,
with S & Sy, and p'~1(C) is a diagonal subgroup of S; x So. Now this subgroup is maximal and
self-normalising in S7 X So, and so it must be equal to the projection of H onto S; X Ss.

Since m3 < |S1], the result now follows if k = 2. Otherwise, Im(p’)/C = Im(p’)/Ss is a core-free
subgroup of S} /S2 = x¥_.S; (or else C would be larger) and, by induction, Im(p')/S> has index
at least Hf:?, m; in S1/S2. So Im(p’) has index at least |Si| Hf:g m; < Hle m; in G, which
completes the proof.

(ii) This is also proved in [13, Theorem 3.1]. Observe first that G has a faithful permutation
representation of degree Zle m; with k orbits, and with S; acting faithfully of degree m; on the
i-th orbit and trivially on all other orbits. So we need to prove that, if G acts faithfully on a set
Q, then |Q] > Zle m;. We prove this by induction on k. The case k =1 is clear, so assume that
E>1.

Since Zle m; < Hle m;, the result follows from (i) if the action is transitive. Otherwise Q =
Q1 Uy where the subsets € and €25 are both fixed by G. Since each S; must act faithfully on at
least one of €27 and s, the result follows by induction applied to these two actions. O

Recall that a group A is almost simple if S < A < Aut(S) for some finite nonabelian simple group
S. The proof of the following result consists of a similar analysis as for the simple groups, and will
be omitted.

Proposition 2.2. Let S < A < Aut(S) for a finite nonabelian simple group S. Then m(A) =
m(S), except in the following cases

S A m(S) m(A)
Ag A £ Sq 6 10
PSL(2,7) PGL(2,7) 7 8
M12 Aut(Mlg) = M12.2 12 Qm(S)
O'N Aut(O'N) = O'N.2 122760 2m(S)
PSL(d,q), d > 3
(d,q) # (3,2),(4,2) AZPIL(d,q) Z, 2m(S)
PSp(4,2°), e > 2 A £ PT'Sp(4,2°) 2] 2m(S)
PSU(3,5) A £ PXU(3,5) 50 126
d—1/qd d d—1
POt (2d,3), d > 4 3[1A/S|, (%) 34 @ 3—1) GG
PQT(8,q), ¢ >4 3/|14/5] o=+l 3m(S)
PO (8,2) 3||14/S] 120 3m(S)
PO (8,3) 3[|A/S|, 6 |A/S| 1080 3m(S)
PQT(8,3) 6/|A/S| 1080 3360
G2(3) Aut(Go(3)) 351 2m(S)
Ga(39),e > 1 A £ TGy (3°) e 2m(S)
Fu(2°) A £ TF,4(29) @70) 2m(S)
Es(g) AZTEg(q) D g (g)

The Condition (x) in the table is A £ PGO(2d,3) when d > 4, and A is not contained in any
conjugate of PGO(8,3) in Aut(PQT(8,3)) when d = 4.

In particular, we have m(A) < 4m(S) in all cases.

Remark. In fact we have m(A4) < 28m(S)/9 in all cases, with equality for certain subgroups of
Aut(PQT(8,3)).

The following result can be proved by a routine examination of the examples in the table.
Lemma 2.3. For 1 <i <k with k> 1, let S; be a finite nonabelian simple group, and let A; be
an almost simple group with S; < A; < Aut(S;). Then Hle m(S;) > Zle m(4;).

Next we consider the case when the group G is not almost simple, but has a unique minimal normal
subgroup M, which is insoluble. So M = x%_,S;, where the S; are isomorphic nonabelian simple

groups that are permuted transitively under the conjugation action of G. In [7, Section 3.2], it is
shown that there is an embedding ¢ : G — W := Aut(S1) ! H that maps M isomorphically onto
the socle of W, where H is the transitive subgroup of Sy induced by the conjugation action of
G on the set {S; : 1 < i < k}. By looking at the definition of ¢, we see that Im(¢)) < Ay H,
where S1 < A; < Aut(S;), and A; is the subgroup of Aut(S;) induced by the conjugation action
of Ng(S1) on 5.

Lemma 2.4. Let G,M,S;, H, A1 be as above. Then m(G) = km(A;).

Proof. The natural permutation representation of A; ! H arising from a representation of A; of
degree m(A;) is faithful of degree km(A;), so we just need to prove that m(G) > km(A;).

So suppose that we have a faithful permutation representation of G on a set €2, and identify G with
its image in Sym(Q2). Since G has a unique minimal normal subgroup, a minimal degree faithful
permutation representation of G is transitive, so we may assume that G is transitive. Then G acts
transitively on the orbits of M on €2, and so there is a fixed number j such that precisely j of the
S; act nontrivially on each such orbit. Since each S; acts nontrivially on some orbit of M, there
must be at least k/j orbits in total. By Lemma 2.1 (i), each such orbit A satisfies |A] > m(S)7
and so |Q| > km(S1)?/j which, by Lemma 2.3, is greater than km(A;) when j > 1. So we may
assume that j = 1. In other words, the subgroups S; have mutually disjoint supports.

Now let N1 = Ng(S1), and let 1 be an orbit of N7 on which S acts nontrivially. Then S; acts
nontrivially on each of its orbits in €2y, so all S; with ¢ > 1 act trivially on ;. For each i with
1 <i <k, we define Q; = QY for g; € G with S = S; (which is independent of the choice of g;).
Since the ; are disjoint, we have |Q| > k|Q].

Suppose that S; has exactly r orbits on £ (so M has kr orbits on Q). If » > 3 then, by Lemma
2.1 (ii) and Proposition 2.2, || > 4km(S1) > km(A;) as required, so assume that r < 3. Also, if
S1 acts imprimitively on these orbits, with blocks of size b > 1, then the orbits have length at least
bm(S1), so we can assume that br < 3 and hence r = 1 in that case. Let N; and C; be the induced
actions of Ny and Cy := Cg(S1) on ;. Since the centraliser of S; in its action on each of its orbits
has order at most b!, we have |C;| < 6, and S; must permute the orbits of C; nontrivially. Then
N; induces a faithful action of]\71/6_’1 =~ A; on the orbits of Cy, so there are at least m(A;) such
orbits, and hence || > m(A;), which completes the proof. O

Now let G be an arbitrary finite group with trivial soluble radical, and let M = M; x --- x M,
be the socle of G, where M, ..., M, are the minimal normal subgroups of G. Then each M; is
the direct product of isomorphic simple groups S;1, ..., Si, for some k; > 1, which are permuted
transitively under the conjugation action of G. Furthermore, G is the subdirect product of groups
G1,...,G,, where G; has the unique minimal normal subgroup M;. For each i, let A;; be the
group with S;; < A;; < Aut(S;1) that is induced by conjugation in Ng(S;1).

Proposition 2.5. With the notation in the previous paragraph, we have m(G) = >_._, kim(A;).

Proof. Since, by Lemma 2.4, G is a subdirect product of groups G; with m(G;) = k;m(A;), we
have m(G) < >°'_, k;m(A;). So suppose that we have a faithful permutation representation of G
on a set Q, and identify G with its image in Sym(2). We have to prove that |Q > >""_, k;m(A;).
The proof is by induction on 7, and Lemma 2.4 handles the case r = 1, so we suppose that r» > 1.

Suppose first that, for all orbits A of GG, the M; do not all act faithfully on A. Let A be an orbit of
G. By renumbering, we may assume that M, ..., My act faithfully on A, and that Msyq,..., M,
do not. Since they are minimal normal subgroups, Msy1,..., M, must act trivially on A. We

claim that |A| > 37 | k;m(A;). Since each M; must act nontrivially on some orbit of G, this is
enough to prove the result.

Let M’ = My x --- x M,. Using similar arguments to the proof of Lemma 2.4, if M’ has more
than three orbits on A, then the claim follows from Lemma 2.1 (ii) and Proposition 2.2. Then,
putting C = Cg(M’) and C the induced action of C on A, we have |C| < 6, and M’ must faithfully
permute the orbits of C'. So the induced action of G' on these orbits is a subdirect product of the
groups (1,...,Gs and, since we are assuming that s < r, the claim follows from the inductive
hypothesis.

Otherwise, there is an orbit A of G on which each M; acts faithfully. Let Aj; be an orbit of
M with Ay € AL For 1 < ¢ < k, suppose that precisely j; of the factors S1,... S, of M; act
faithfully on Ajps. Then j; > 1 for all 4.

By Lemma 2.1 (i), we have |Ap/| > Hle m(S;1)% which, by Lemma 2.3, is greater than Zle Jim(4;1).
Now, since each S;; must act nontrivially on A9, for some g € G, the total number of orbits of M
of the form A, must be at least k;/j; for each individual i. So |Q| > |A] > Zle kim(A;1), which
completes the proof. O

2.2. Calculating the minimal degree permutation representation: practice

The nonabelian composition factors of G are identified as abstract simple groups by CompositionTree.
Each nonabelian simple group S has a designated standard copy, which is (the image of) either a
permutation representation of S, or a projective matrix representation of S over a finite field. For
example, the standard copy of A,, is its natural permutation representation, and the standard copy
of PSL(d, q) is SL(d, q)/Z(SL(d, q)), with the natural representation of SL(d, q). CompositionTree
sets up effective isomorphisms between the nonabelian composition factors of G and their standard
copies: that is, isomorphisms for which images and inverse images of arbitrary group elements can
be efficiently computed.

Let L be the soluble radical of G. The structure of G/L as a subdirect product of groups with
unique minimal normal subgroups is computed using the algorithms described in [1, Sections 10,11],
and we use the notation of the previous subsection for the minimal normal subgroups M; of G/L,
and their simple factors S;;. In particular, we can identify the automorphisms of the groups Sj;
induced by elements of N;; := Ng(S;1), and hence determine the subgroups A;; of Aut(S;;) that
are induced by N;;.

The results established in the previous subsection enable us to calculate m(G/L) = >°1_ | k;m(A;).
By the methods described in [7, Section 3.2] in the context of permutation groups, and also in [17]
in the context of matrix groups with a composition tree, we can now compute p : G — Sym(2)
with ker p = L that induces a minimal degree permutation representation of G/L provided that,
for each ¢ with 1 <1i¢ < r, we can

(i) construct a minimal degree permutation group AP, & A;;; and
(i) compute images under a surjective homomorphism p; : N;; — AP).

Since we shall be discussing a single value of ¢ from now on, let us drop the first subscript, and write
Sy instead of S;1,, etc. We shall now discuss how we accomplish (i) and (ii) for the various types
of simple groups S;. We denote by S3 the standard copy of S; computed by CompositionTree.
So we have an effective isomorphism X — S5 with kernel Y, where X/Y is the composition factor
of G corresponding to S7.

2.2.1. Alternating groups

Both tasks are straightforward for S; = A,,. Apart possibly from the small cases n = 5, 6,8, where
A, has an alternative name, we have S5 = Alt(n) (the natural representation of A,), and we take
AY = Alt(n) or Sym(n) in the natural representation. The image of an automorphism in Sym(n)
of S5 can be found easily by evaluating it on 3-cycles of Alt(n).

2.2.2. Classical groups

Suppose next that Sy is isomorphic to a classical simple group, and let Sy be the corresponding
quasisimple matrix group. (So, for example, if S = PSL(d, ¢), then S1 = SL(d, g) in its natural
representation.) Then (except possibly for a few very small cases) S; = S1/Z(51).

Let V be the vector space on which S; acts naturally. Then, with the exception of a few cases
such as PSU(3,5) and PSp(2m,2) for m > 3, the restriction of the smallest degree permutation
representation of A; to S; corresponds to the action of S on the subspaces of V' spanned by singular
or non-singular vectors of V' or, when Sy = SU(4, q), the singular 2-subspaces of V. We can use
this action to define an effective homomorphism with kernel Z (5’1) from S to a permutation group
P = Sq, which provides an effective isomorphism S; — P. (In our current implementations, we do
not attempt to achieve a representation of smallest possible degree in the small exceptional cases.)

Any diagonal or field automorphisms of S; in A; induce (linear or semilinear) actions on V, and so
their actions on the subspaces can also be computed easily, and we can extend P to a group @ of
the same degree containing these automorphisms. (There are technical complications in the groups
Q7 (d, q) resulting from the fact that field automorphisms do not always preserve the matrix of the
fixed orthogonal form, but we will not discuss those further here.)

If there are no graph automorphisms in A;, then deg@ = m(A4;), and we can take A} = Q,
thereby solving Problem (i). Otherwise, we have m(A4;) = 2deg @ or, in the case of the triality
automorphism of Q% (8, q), m(A;1) = 3deg Q. The actions of the graph automorphisms on S5 in the
various cases are described precisely in [9, Section 12], and we can construct A} as a subgroup of
Q105 or QSym(3), using essentially the same wreath product embedding techniques as described
earlier.

For the construction of the homomorphisms p; in Problem (ii), we observe first that the CT-SR
data enables us to compute the actions of the automorphisms of S; induced by elements of Ny
as automorphisms of S5. We can use the methods described in [1, Section 10] to express these
automorphisms as products of graph, field, diagonal and inner automorphisms. Our construction
of A} allows us to map (under p;) the first three of these to the corresponding automorphisms in
AR, The inner automorphism in the product is returned as an element of S, that induces it, and
we can either use the CT-SR data to express it as a word (or more precisely a straight line program)
in the generators of S, and thereby compute its image under p;, or (in almost all cases) we can
compute this image directly by its action on the relevant subspaces of V.

2.2.8. Ezxceptional groups of Lie type and sporadic groups

Similar methods to those for the classical groups could be used for the exceptional groups of
Lie types and for the Suzuki groups. We have not yet implemented these (although it would be
worthwhile to do this at least for the Suzuki groups, which should not be difficult), and we currently
treat those groups in these classes that fall within the range of practical computation as sporadic
groups.

There is enough information in [10] and [31] to solve Problem (i) and to find an effective isomor-

phism from S to its isomorphic image in Af. Indeed, this isomorphism is typically equal to the
identity map when S is a permutation group and to an action on subspaces of a vector space
when S5 is a matrix group.

For Problem (ii), we have to identify an automorphism « of S, and we currently do this by
calculating the action of o on the two standard generators of S5, mapping their images to A} and
then identifying the element of A} which induces this automorphism by carrying out two conjugacy
tests in A}. These conjugacy tests are unsatisfactorily slow in some large groups A} (such as O’'N.2,
which has minimal degree 245520), and improved methods would be desirable.

2.8. Concluding remarks

For groups A; for which m(A;) is large, evaluation of the maps p;, and hence also of the complete
permutation action map p : G — Sym(£2) can be slow, particularly in the large sporadic groups. So
we need to design subsequent algorithms to use as few applications of p as possible. This was also
observed by Hulpke in [17], who recommended using the shadowing technique wherever possible,
which essentially means that, if we need to evaluate p(g1g2 - - - ¢gn) and we have already computed
each p(g;), then we should store their values and compute it as p(g1)p(g2) - - - p(gn)-

In contrast to this, an inverse image under p can typically be evaluated much more quickly, by
using BSGS techniques in A to express elements of A} as words over a strong generating set. Also,
if we successfully use the data computed so far to find a satisfactory base for G using the methods
to be described in the following section, then we can redefine the map p using BSGS machinery,
and its subsequent evaluation will be significantly faster.

3. Using CT-SR algorithms to compute a BSGS

The purpose of this section is to describe some new methods, that use CT-SR data, to find an
effective BSGS of a matrix group over a finite field. We shall do that in Subsection 3.1 below, but
let us first briefly survey some earlier methods.

Let G < GL(d, K) be a finite matrix group over a field K, and let V =2 K< be the space of row
vectors on which G acts (on the right). A base for V' consists of a sequence (81, ..., B) of subspaces
and vectors from V such that only the identity element stabilises every §;. Let G(¥) := Gga,,...8; 1
be the i-th basic stabiliser; so G*+1 = 1.

For efficient computation within G, the basic orbits BiG “ should be moderately short (up to about
10% is desirable, but computation remains feasible with basic orbit lengths exceeding 10%). Another
consideration is that computation is more efficient when the dimensions of the subspaces 3; are not
too large, and dimension 1 is the optimal choice. This is mainly because, when working with bases,
large numbers of images of base points under group elements need to be tested for equality, and
testing equality of subspaces requires the computation of echelonised bases. So, in practice, there
is frequently a choice to be made between larger dimensional 5; and longer basic orbit lengths. Our
(admittedly limited) experience to date suggests that it is preferable to choose lower dimensional
B; provided that this does not result in excessively large basic orbit lengths.

Let us call a base for G satisfactory if it can be used for effective computations within G without
being excessively slow or memory intensive. This definition is necessarily imprecise, because the
effectiveness of a base depends heavily on what types of computations in the group it will be
used for. Not all finite matrix groups of moderately small dimension have satisfactory bases. For
example, for G = SL(d, q), there will inevitably be a basic orbit of length at least (¢* —1)/(q — 1),

and at least d base points with orbit lengths of this order of magnitude. But there are many
matrix groups that have satisfactory bases that are not straightforward to find, and in this section
we shall describe some techniques for locating them.

The first implementations of BSGS methods for computing with a matrix group G over a finite field
were described by Butler in [5]. The base computed is a combination of 1-dimensional subspaces
and vectors from V. These subspaces were typically chosen as those spanned by basis vectors of V.
Methods for finding subspaces with shorter orbits, by choosing them as common eigenspaces of two
or more group elements, were proposed by Murray and O’Brien in [22] and their implementations
are available in Magma.

More recently, methods involving the algorithms used in CompositionTree have been used in the
case when the field K is finite. The idea is to first apply a suitably chosen basis change to V' and
then to choose (some of) the 3; as the 1-dimensional subspaces spanned by basis vectors.

If the action of G on V is reducible, then it is helpful (in the sense that the resulting basic orbit
lengths will be shorter) to choose a basis for V' that is compatible with a composition series for
the action of G, and to choose the §; from small dimensional G-submodules. Again, if the action
of G is imprimitive, then it helps to choose a basis for V' that contains bases of the blocks of
imprimitivity.

In the current Magma implementation of the CT-SR algorithms, before embarking on a computation
with a new group, Magma will, by default, use these methods to try and find a satisfactory base
for the group. If it succeeds, then it will use that base for computations, and otherwise it will use
CT-SR algorithms. Unfortunately, the best choice may depend on the nature of the subsequent
computations with that group, which is obviously impossible for Magma to predict, so the user
always has the option of specifying which methods to use.

3.1. Using the CT-SR data to search for a base

Even more recently, the CT-SR data have been used to help search for a satisfactory base for matrix
groups over a finite field. As we shall see, this new method involves making a variety of choices at
all stages, and further research will be needed to develop guidelines for making effective choices.
Unlike any of the methods described above, the chosen base may contain subspaces 3; of dimension
greater than 1. So it is sometimes necessary to make a choice between higher dimensional 3; and
longer basic orbit lengths.

The new method has been successful in finding usable bases for almost all of the examples that are
discussed in Section 5 below, so we also have a choice between using BSGS methods and the CT-SR
data for the algorithms to be described in Section 4. The algorithm descriptions do not depend
on which of these choices is made, but their implementations might. Our experience to date with
Magma implementations is that the examples typically run faster using BSGS techniques but not
by a factor greater than 4. We observe also that a considerably larger variety of algorithms is
available in the BSGS context: for example we can compute conjugacy class representatives of all
subgroups rather than just subgroups of a specified type as in Section 4.

The main idea of this new method is to find subgroups H < G of low index |G : H|, and look
for subspaces W of V that are left invariant by H but not by G. If we find such a subspace W,
then the orbit length of W will be at most |G : H| so W may be a suitable choice for a base
point for G. (But, for reasons mentioned earlier, if dim(W) is high, then we may prefer to defer
this choice and first consider subgroups of larger index that might produce lower dimensional base
points.) Provided that we consider subgroups H in order of decreasing size, we will know that H
is equal to the full stabiliser in G of W. We can then either apply the methods recursively to H
or alternatively one of the earlier methods for choosing a BSGS may be effective on H.

We start by running CompositionTree on the group and then using the CT-SR data to find the
homomorphism onto the radical quotient G/L and also a permutation representation of G/L as
described in Section 2.

In the case when G/ L is trivial (that is, when G is soluble), the CT-SR data includes a representation
of G as a PC-group, and we can use this effectively to find the required subgroups of G of low
index. We remark however that the earlier methods for finding a BSGS, and specifically those
that involve a basis change of V' to respect a decomposition of G as a reducible or an imprimitive
group, are typically highly effective in this situation.

Otherwise G/L is nontrivial and we can use the low index subgroups algorithm to find subgroups
of low index in the permutation representation of G/L, and then use their inverse images in G as
our candidate subgroups H. In most of the examples that we have considered, this approach has
been successful in finding a satisfactory base for G. In the small number of examples in which it
failed (this happened for example in the example 2!4.A3.S3 < GL(64,5) in the tables in Section
5), we were able to apply the method recursively to a subgroup H of low index in G for which the
soluble radical of H is larger than that of GG, and it succeeded on H.

4. Some further CT-SR algorithms

It is assumed throughout this section that a permutation representation p of G/L has been com-
puted as described in Section 2. The algorithms discussed can be carried out either using the
CT-SR data, or with BSGS methods if a satisfactory base for G is available.

4.1. Centralisers, conjugacy testing, normalisers and intersections

We compute centralisers in G of elements of G, test pairs of elements of G for conjugacy in G,
and find a set of representatives of the conjugacy classes of G by solving these problems in the
permutation group Im(p) and then lifting the results through elementary abelian layers of L, using
the algorithms described in [16, Section 8.8] for polycyclic groups. These methods are also described
for matrix groups in [17, Section 6]. Algorithms for computing normalisers in G of subgroups of
G, testing subgroups of G for conjugacy in GG, and computing the intersection of two subgroups of
G, were implemented using the same general approach.

4.2. Character tables

An algorithm developed by Unger [27] for computing the table of complex characters for a group
G is based on Brauer’s result that every character of a finite group G can be written as an integer
linear combination of characters induced from elementary subgroups of G. An elementary subgroup
is one that is a direct product of a cyclic group and a group of prime-power order.

At the time the algorithm was published it was seen as being applicable only to groups of moderate
size. However, a deeper understanding of the algorithm and a number of improvements have led
to a more powerful algorithm that is capable of computing character tables of very large groups
provided that the number of conjugacy classes does not much exceed three thousand.

Recently attention has been drawn to the fact that, while numerous theorems have been proven
using information taken from information given in the ATLAS of Finite Groups [10], there are
many cases in which no proofs are given for the correctness of this information, and no citations
are provided. This general problem and its recent and potential remedies are discussed in [4].
In particular, independent computations of the ATLAS character tables are being carried out,

10

including their verification using the Unger algorithm. More than 400 of the approximately 430
ATLAS character tables have now been verified. These include all but two of the sporadic groups.
A mixture of permutation group BSGS methods and matrix group CT-SR methods are being used.
The only serious error found so far was in the case of the character table for Eg(2) where the 2-
power map of six conjugacy classes of elements of order 91 had been incorrectly determined leading
to errors in six characters. A paper describing this work is in preparation.

4.8. Normal subgroups, mazimal subgroups, coset actions, and low index subgroups

To compute maximal subgroups and normal subgroups of matrix groups for which the CT-SR
data has been computed, we use the same methods as are described for permutation groups in
[7] and [6], respectively. The same applies to the computation of the permutation action 7¢ g
of the group G on the right cosets of a subgroup H, which we can effectively split up into the
corresponding computations for the subgroup HL/L of GL/L and for the subgroup H N L of L,
in their representations as a permutation group and as a PC-group, respectively.

An algorithm for computing representatives of the conjugacy classes of subgroups of finite permu-
tation groups up to a specified index n is described in [8]. This makes essential use of corresponding
computations in G/L, and once again we can apply the same methods in the new situation. We
have however introduced a new trick, which can also be used in the algorithm for permutation
groups. The CompositionTree data includes an identification of all of the nonabelian composition
factors of G and, as we saw in Section 2 the smallest degrees of their nontrivial permutation rep-
resentations are all known. If, for some composition factor, this minimal degree exceeds n, then
we can effectively ignore it in our search for subgroups of index up to n, since any such subgroup
would have to contain that factor. As a trivial example, to find subgroups of index up to 10 in
As x Aqq, we can ignore the Aq; factor and do all of our calculations in As. But, as is often the
case, this idea is much easier to describe theoretically than it is to implement.

One motivation for the study of this problem in matrix groups is that a complete list of subgroups
of index up to the degree d of an irreducible matrix group G < GL(d, ¢) can be used to provide
a straightforward definitive test for the primitivity of G. Particularly in examples in which G
is semilinear, this question is not always resolved by CompositionTree, and this application has
already proved useful even in small matrix groups. It is often the case in such examples that some
of the composition factors of G have no proper subgroups of index at most d.

5. Performance

The tables list timings of various computations using our Magma implementations of some of the
functions that we have described in this paper. The computations were all done using an Intel
Xeon E5-2687W CPU with a clock speed of 3.10GHz and having GB 396 of memory. All times
are averages over ten runs.

The times in Table 1 are for our implementations using just the CT-SR data, and those in Table
2 for the same examples using the BSGS computed using this data. (So the computations whose
times are listed in the columns headed ‘CS’ and ‘RQ’ in the first table were prerequisites for the
computations timed in the second table.) Table 3 lists times for computing this BSGS. For the
final group in the first table we were unable to find a satisfactory BSGS.

In Tables 1 and 2, the columns to the left of the vertical line provide information about the
examples, whereas those to the right list times in seconds. In the structural description of the
groups, the notation O for the orthogonal groups OgF (3) and Og(3) denotes the simple group,
which could also be denoted by PQg (3) or PQyg(3).

11

G G| d DRQ #CI] CS RQ MS NS LIS CI CT
A, S7EI0 64 14 105| 40 07 01 01 17 07 18
0 (3) 5.0E12 298 1120 114|113 21 24 01 56 10 1422
Suz 45E11 142 1782 43|57 01 02 00 04 14 62
2'09(3) 1.3E17 16 91840 326 | 2.3 0.1 1.4 0.0 2.9 50 189
30'N 1.3E12 153 122760 80| 62 48 15 40 35 54 211

4.L4(5)3.83 9.2E30 64
214 A3.S; 45E12 64
31712.2°Suz.2 2.9E18 78
29716 Sp(2) 1.6E18 215
239 1L5(2) 1.1E16 144
21722 Coy 3.5E20 1025
21711.815(2) 1.0E20 32

468 79547 | 14 14 33 24 237 1904
45 1218 80 21 0.2 23 1173 37 10220
1782 253 | 73 21 1.0 25 38 1034 314
255 703 10 1.8 05 29 59 100 9819
31 1033 10 0.5 09 22 54 26 16208
2300 448 | 375 50 26 117 189 4682 55616
1023 1235| 35 0.2 08 05 3.9 o0 39443

TN NN WOLOU R WN N W

Table 1: CT-SR times for subgroups, conjugacy classes and character tables

G G| d DRQ #CI| CS MS NS LIS GG CT

2 A, 87EI0 64 14 105| 43 01 01 03 05 6.0
07 (3) 50E12 298 1120 114|114 12 00 07 12 103
Suz 45E11 142 1782 43178 01 00 01 1.7 52
20¢(3) 1.3E17 16 91840 326 | 32 1.3 00 57 43 80
30°'N 1.3E12 153 122760 80| 69 61 25 76 46 49

4.14(5)%.S3 9.2E30 64
214 A%S; 4.5E12 64
31412 2°Suz.2 2.9E18 78
29116 8¢(2) 1.6E18 215
230 15(2) 1.1E16 144
21422 Co, 3.5E20 1025

468 79547 | 34 20 21 13 2339
45 1218|107 0.6 1.9 109 27 3089
1782 253 | 9.7 23 47 45 21 182
255 703 14 25 6.2 9.1 58 8858
31 1033 | 11 25 17 17 55 17409
2300 448 | 606 110 180 1458 2948 51224

NN WO WD NN W

Table 2: BSGS times for subgroups, conjugacy classes and character tables

Notation such as 4.5E11 for a group order means 4.5 x 10'!. The columns headed ‘d’ and ‘q’ refer
to the degree and field of the input group G < GL(d,q); ‘DRQ’ is the degree of the computed
permutation representation of the radical quotient G/L; and ‘#Cl’ is the number of conjugacy
classes of G. The columns headed ‘CS’, ‘RQ’, ‘MS’, ‘NS’, ‘LIS’, ‘Cl’, and ‘CT’ are the times for
computing a composition series (including the composition tree), the permutation representation
of G/L, the maximal subgroups, the normal subgroups, the subgroups of index up to 100, the
conjugacy classes, and the character table of GG, respectively. We have chosen examples in which
the default use of BSGS methods fails or is very slow.

In Table 3, we provide details of bases that were found for some of these groups using the method
described in Subsection 3.1, after computing the CT-SR data and a permutation representation of
the radical quotient of G. In the ‘base dimensions’ column, an entry 0 means that the corresponding
base point was a vector rather than a subspace. Observe that most of these bases were found
moderately quickly.

As a general rule our conclusion is that, if a BSGS with reasonably short orbits can be found,
then it is likely to be worthwhile using it in subsequent calculations and, in difficult examples, it is
worth devoting some effort to finding a good BSGS. (In a few examples, our code found bases with
much shorter orbit lengths after several attempts.) But when no good base can be found, then it
is better to continue using the CT-SR data. Indeed, there remain examples, such as 21711.514(2)

12

Group el d q || Basic orbit lengths Dimensions | Time
2'Aq4 8.7E10 64 3| 141312111098765432 321611 0 4.3
OF (3) 5.0E12 298 2 || 11204013 129 4 33 272 38261412142 | 12
612
Suz 4.5E11 142 2 || 1782 416 100 63 96 36 14 7.9
2'09(3) 1.3E17 16 3| 91840120117 108 108 81542 | 170 3.2
30'N 1.3E12 153 4 || 122760 5586 112 6 3 140 68
4.L4(5)3.83 9.2E30 64 5 || 468 155 150 125 16 312 155 150 | 16150 34
125 156 155 150 125 16 16 4
214 A%S; 45E12 64 5| 288192965554443334 | 32120 107
313.2'Suz.2 2.9E18 78 3 || 228801128160122332312 | 15440120112 | 9.5
225.55(2) 1.6E18 215 2| 255126643215832128128 | 116 5.8
4322222
239 1L5(2) 1.1E16 144 2 || 31302824 16 1024 256 2048 2 | 4° 1* 10
223 Coy 3.5E20 1025 2 || 2300672 165 128 72 9 214 1024 | 155 75 65 114 578

Table 3: Details of bases for G

in which we were unable to find any satisfactory BSGS using our programs.

References

1]

2]

H. Baédrnhielm, D.F. Holt, C.R. Leedham-Green, E. A. O’Brien. A practical model for com-
putation with matrix groups, J. Symbolic Computation 68 (2015), 27-60.

L. Babai, R. Beals, and A. Seress. Polynomial-time theory of matrix groups. In STOC 09
Proceedings of the forty-first annual ACM symposium on Theory of computing, ACM New
York, 2009, 55-64.

Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA algebra system I: The user
language, J. Symbolic Comput. 24 (1997), 235-265.

T. Breuer, G. Malle, and E. A. O’Brien. Reliability and reproducibility of Atlas information,
2016, https://arxiv.org/abs/1603.08650.

G. Butler. The Schreier algorithm for matrix groups. In SYMSAC 76, Proc. ACM Sympos.
Symbolic and Algebraic Computation, New York, 1976. (New York, 1976), Association for
Computing Machinery, 167-170.

J.J. Cannon, B. Cox, and D.F. Holt, Computing the subgroups of a permutation group, J.
Symbolic Comput. 31 (2001), 149-161.

J.J. Cannon and D.F. Holt. Computing maximal subgroups of finite groups, J. Symbolic
Comput. 37 (2004), 589-609.

J. J. Cannon, M. Slattery, A. K. Steel, and D. F. Holt. Computing subgroups of bounded index
in a finite group, J. Symbolic Comput. 40 (2005), 1013-1022.

R.W. Carter. Simple Groups of Lie Type, John Wiley and Sons, 1972.

J.H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson. ATLAS of Finite Groups,
Oxford, 1985.

13

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[25]

[26]

[27]

[28]

B. N. Cooperstein. Minimal degree for a permutation representation of a classical group, Israel
J. Math, 30 (1978), 213-235.

A.S. Detinko, D. L. Flannery, and E. A. O’Brien. Recognizing finite matrix groups over infinite
fields, J. Symbolic Comput. 50 (2013), 100-109.

D. Easdown and C.E. Praeger, On minimal faithful permutation representations of finite
groups, Bull. Austral. Math. Soc. 38 (1988), 207-220.

The GAP Group. GAP — Groups, Algorithms, and Programming, Version 4.7, 2014,
http://www.gap-system.org.

S. Guest, J. Morris, C. E. Praeger and P. Spiga. On the maximum orders of elements of finite
almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc. 367, no.
11 (2015), 7665-7694.

Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational group theory,
Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton,
FL, 2005.

A. Hulpke. Computing conjugacy classes of elements in matrix groups, J. Algebra 387 (2013),
268-286.

Peter Kleidman and Martin Liebeck The subgroup structure of the finite classical groups,
Cambridge University Press: Cambridge, 1990.

M. W. Liebeck and J. Saxl. On the orders of maximal subgroups of the finite exceptional
groups of Lie type, Proc. London Math. Soc. 55 (1987), 299-330.

V.D. Mazurov. Minimal permutation representations of finite simple classical groups. Special
linear, symplectic, and unitary groups, Algebra Logika 32 No. 3 (1993), 267-287.

V.D. Mazurov and V.A. Vasilyev. Minimal permutation representations of finite simple
orthogonal groups, Algebra Logika 33 No. 6 (1994), 603-627.

Scott H. Murray and E. A. O’Brien. Selecting base points for the Schreier-Sims algorithm for
matrix groups, J. Symbolic Comput. 19 (1995), 577-584.

M. Neunhéffer and A. Seress. A data structure for a uniform approach to computations with
finite groups. In ISSAC ’06: Proceedings of the 2006 international symposium on Symbolic
and algebraic computation, ACM, New York, 2006, 254—-261.

Max Neunhoffer and Akos Seress et al. recog - methods for constructive recognition,
www-groups.mcs.st-and.ac.uk/ neunhoef/Computer/Software/Gap/recog.html.

W. H. Patton, The minimum index for subgroups in some classical groups: a generalization of
a theorem of Galois, PhD Thesis, U. of Illinois at Chicago Circle, 1972.

Charles C. Sims. Computational methods in the study of permutation groups. In Computa-
tional problems in abstract algebra (Ozford, 1967), J. Leech, editor, Pergamon Press, Oxford,
1970, pages 169-183.

W.R. Unger. Computing the character table of a finite group, J. Symbolic Comput. 41 No.
8 (2006), 847-862.

A.V. Vasilyev. Minimal permutation representations of finite simple exceptional groups of
types Ga and Fy, Algebra Logika 35 No. 6 (1996), 663-684.

14

[29] A.V. Vasilyev. Minimal permutation representations of finite simple exceptional groups of
types Eg, E7, and Eg, Algebra Logika 36 No. 5 (1997), 518-530.

[30] A.V. Vasilyev. Minimal permutation representations of finite simple exceptional twisted
groups, Algebra Logika 37 No. 1 (1998), 9-20

[31] R.A. Wilson et al. Atlas of Finite Group Representations, brauer .maths.qmul.ac.uk/Atlas.

15

