355 research outputs found

    A Joint Inversion of Ground Deformation and Focal Mechanisms Data for Magmatic Source Modelling

    Get PDF
    The paucity of geodetic data acquired on active volcanoes can make the understanding of modelling magmatic systems quite difficult. In this study, we propose a novel approach, which allows improving the parameter estimation of analytical models of magmatic sources (e.g., shape, depth, dimensions, volume change, etc.) by means of a joint inversion of surface ground deformation data and P-axes of focal plane solutions. The methodology is first verified against a synthetic dataset of surface deformation and strain within the medium, and then applied to real data from an unrest episode occurred before the May 13 2008 eruption at Mt. Etna (Italy). The main results clearly indicate the joint inversion improves the accuracy of the estimated source parameters by about 70 %. The statistical tests indicate that the source depth is the parameter with the highest increment of accuracy. In addition, a sensitivity analysis confirms that displacements data are more useful to constrain the pressure and the horizontal location of the source than its depth, while the P-axes better constrain the depth estimation

    Crustal motion along the Calabro-Peloritano Arc as imaged by twelve years of measurements on a dense GPS network

    Get PDF
    In this work, we show the results of 12 years of continuous and survey-mode GPS measurements carried out along the western part of the Calabro-Peloritano Arc, from 1996 until the more recent acquisitions in 2008. The results highlight that a NW-SE-oriented similar to 0.15 mu strain/yr extension across the Messina Strait and the Aeolia Tindari-Letojanni fault system is active. Moreover, a N-S compressive strain-rate (similar to 0.65 mu strain/yr) is active across Vulcano and Lipari Islands coupled with an extensional strain-rate of similar to 0.15 mu strain/yr in the E-direction. Finally, taking into account the observed horizontal velocity field, an analytical inversion was performed to obtain a reliable model of deformation of the investigated area. The main results are consistent both with focal mechanism solutions and the current structural setting of the investigated area. (C) 2009 Elsevier B.V. All rights reserved

    The seismogenic structure of the 2013-2014 Matese seismic sequence, Southern Italy: implication for the geometry of the Apennines active extensional belt

    Get PDF
    Seismological, geological and geodetic data have been integrated to characterize the seismogenic structure of the late 2013-early 2014 moderate energy (maximum local magnitude M-Lmax = 4.9) seismic sequence that struck the interior of the Matese Massif, part of the Southern Apennines active extensional belt. The sequence, heralded by a M-L = 2.7 foreshock, was characterized by two main shocks with M-L = 4.9 and M-L = 4.2, respectively, which occurred at a depth of similar to 17-18 km. The sequence was confined in the 10-20 km depth range, significantly deeper than the 1997-1998 sequence which occurred fewkm away on the northeastern side of the massif above similar to 15 km depth. The depth distribution of the 2013-14 sequence is almost continuous, albeit a deeper (16-19 km) and a shallower (11-15 km) group of events can be distinguished, the former including the main shocks and the foreshock. The epicentral distribution formed a similar to 10 km long NNW-SSE trending alignment, which almost parallels the surface trace of late Pliocene-Quaternary southwest-dipping normal faults with a poor evidence of current geological and geodetic deformation. We built an upper crustal model profile for the eastern Matese massif through integration of geological data, oil exploration well logs and seismic tomographic images. Projection of hypocentres on the profile suggests that the seismogenic volume falls mostly within the crystalline crust and subordinately within the Mesozoic sedimentary cover of Apulia, the underthrust foreland of the Southern Apennines fold and thrust belt. Geological data and the regional macroseismic field of the sequence suggest that the southwest-dipping nodal plane of the main shocks represents the rupture surface that we refer to here as the Matese fault. The major lithological discontinuity between crystalline and sedimentary rocks of Apulia likely confined upward the rupture extent of the Matese fault. Repeated coseismic failure represented by the deeper group of events in the sequence, activated in a passive fashion the overlying similar to 11-15 km deep section of the upper crustal normal faults. We consider the southwest-dipping Matese fault representative of a poorly known type of seismogenic structures in the Southern Apennines, where extensional seismogenesis and geodetic strain accumulation occur more frequently on NE-dipping, shallower-rooted faults. This is the case of the Boiano Basin fault located on the northern side of the massif, to which the 1997-1998 sequence is related. The close proximity of the two types of seismogenic faults at the Matese Massif is related to the complex crustal architecture generated by the Pliocene-early Pleistocene contractional and transpressional tectonics

    The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading

    Get PDF
    Earthquake initiation, propagation and arrest are influenced by fault frictional properties(1,2) and preseismic stress(3,4). Studies of triggered and induced seismicity(5-7) can provide unique insights into this influence. However, measurements of near-field, surface ground deformation(8,9) and pre-earthquake stress conditions necessary for such studies are rare. Here, we use geodetic data to determine surface deformation associated with the M-w 5.1 earthquake that occurred in Lorca, southeast Spain, on 11 May 2011. We use an elastic dislocation model to show that earthquake nucleation and the area of main fault slip occurred at very shallow depths of 2-4 km, on a rupture plane along the Alhama de Murcia Fault. Slip extended towards the surface, across fault segments with frictional properties that changed from unstable to stable. The area of fault slip correlates well with the pattern of positive Coulomb stress change that we calculate to result from the extraction of groundwater in a nearby basin aquifer. We therefore suggest that the distribution of shallow slip during the Lorca earthquake could be controlled by crustal unloading stresses at the upper frictional transition of the seismogenic layer, induced by groundwater extraction. Our results imply that anthropogenic activities could influence how and when earthquakes occur

    Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART.

    Get PDF
    Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load

    Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy)

    Get PDF
    The continuous GPS network operating on Mt. Etna with its 36 stations is currently one of the largest worldwide. The aim of this network is the evaluation of volcanic hazard and the modelling of the active sources. In this paper, we propose an in-depth analysis and modelling of continuous GPS data collected at Mt. Etna from May 2008 to December 2010. The analyzed period has been divided into four different coherent phases: 1) 14 May 2008-02 August 2008 (deflation of the entire GPS network); 2) 02 August 2008-14 June 2009 (deflation of the summit area and inflation at lower heights); 3) 14 June 2009-21 May 2010 (inflation of the entire GPS network); 4) 21 May 2010-31 December 2010 (inflation at medium and low heights and end of the inflation in the summit area). Analytical models indicate a non-uniform deformation style revealing spaced sources acting at different time on different segments of a multi-level magma reservoir. The Etnean plumbing system imaged here is depicted as an elongated magma reservoir that extends from the volcano body downwards to about 6.5 km below sea level (b.s.l.), sloping slightly towards the North-West, with storage volumes located at about 6.5, 2.0 and 0.0 km (b.s.l.). The changes in position of the modelled pressure sources during the analyzed time intervals indicate that, throughout the 2008 eruptive period, the deformation field was mostly driven by the upward migration of magma. On the other hand, the pattern of deformation recorded after the end of the eruption strongly suggests a significant contribution of the magma overpressure generated by the gas boiling, thus outlining the importance of volatiles content in magma. Citation: Aloisi, M., M. Mattia, C. Ferlito, M. Palano, V. Bruno, and F. Cannav (2011), Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy), Geophys. Res. Lett., 38, L16306, doi:10.1029/2011GL048488

    Multiparametric study of the February-April 2013 paroxysmal phase of Mt. Etna New South-East crater

    Get PDF
    Between January 2011 and April 2013, Mt. Etna's eruptive activity consisted of episodic intracrater strombolian explosions and paroxysms from Bocca Nuova, Voragine, and the New South-East (NSEC) summit craters, respectively. Eruptions from NSEC consisted of initial increasing strombolian activity and lava flow output, passing to short-lasting lava fountaining. In this study we present seismic, infrasound, radiometric, plume SO2 and HCl fluxes and geodetic data collected by the INGV monitoring system between May 2012 and April 2013. The multiparametric approach enabled characterization of NSEC eruptive activity at both daily and monthly time scales and tracking of magma movement within Mt. Etna's plumbing system. While seismic, infrasound and radiometric signals give insight on the energy and features of the 13 paroxysms fed by NSEC, SO2 and halogen fluxes shed light on the likely mechanisms triggering the eruptive phenomena. GPS data provided clear evidence of pressurization of Mt. Etna's plumbing system from May 2012 to middle February 2013 and depressurization during the February-April 2013 eruptive activity. Taking into account geochemical data, we propose that the paroxysms' sequence represented the climax of a waxing-waning phase of degassing that had started as early as December 2012, and eventually ended in April 2013. Integration of the multidisciplinary observations suggests that the February-April 2013 eruptive activity reflects a phase of release of a volatile-rich batch of magma that had been stored in the shallow volcano plumbing system at least 4 months before, and with the majority of gas released between February and March 2013

    Risk factors for liver decompensation and hcc in hcv-cirrhotic patients after daas: A multicenter prospective study

    Get PDF
    Background: Prospective studies on predictors of liver-related events in cirrhotic subjects achieving SVR after DAAs are lacking. Methods: We prospectively enrolled HCV cirrhotic patients in four Italian centers between November 2015 and October 2017. SVR and no-SVR cases were compared according to the presence or absence of liver-related events during a 24-month follow-up. Independent predictors of liver-related events were evaluated by Cox regression analysis. Results: A total of 706 subjects started DAAs therapy. SVR was confirmed in 687 (97.3%). A total of 61 subjects (8.9%) in the SVR group and 5 (26.3%) in the no-SVR group had liver-related events (p < 0.03). The incidence rate x 100 p/y was 1.6 for HCC, 1.7 for any liver decompensation, and 0.5 for hepatic death. Baseline liver stiffness (LSM) ≥ 20 kPa (HR 4.0; 95% CI 1.1–14.1) and genotype different from 1 (HR 7.5; 95% CI 2.1–27.3) were both independent predictors of liver decompensation. Baseline LSM > 20 KPa (HR 7.2; 95% CI 1.9–26.7) was the sole independent predictor of HCC. A decrease in liver stiffness (Delta LSM) by at least 20% at the end of follow-up was not associated with a decreased risk of liver-related events. Conclusion: Baseline LSM ≥ 20 kPa identifies HCV cirrhotic subjects at higher risk of liver-related events after SVR

    Robust localization and identification of African clawed frogs in digital images

    Get PDF
    We study the automatic localization and identification of African clawed frogs (Xenopus laevis sp.) in digital images taken in a laboratory environment. We propose a novel and stable frog body localization and skin pattern window extraction algorithm. We show that it compensates scale and rotation changes very well. Moreover, it is able to localize and extract highly overlapping regions (pattern windows) even in the cases of intense affine transformations, blurring, Gaussian noise, and intensity transformations. The frog skin pattern (i.e. texture) provides a unique feature for the identification of individual frogs. We investigate the suitability of five different feature descriptors (Gabor filters, area granulometry, HoG,1 dense SIFT,2 and raw pixel values) to represent frog skin patterns. We compare the robustness of the features based on their identification performance using a nearest neighbor classifier. Our experiments show that among five features that we tested, the best performing feature against rotation, scale, and blurring modifications was the raw pixel feature, whereas the SIFT feature was the best performing one against affine and intensity modifications

    Pressurization and depressurization phases inside the plumbing system of Mount Etna volcano: Evidence from a multiparametric approach

    Get PDF
    During 2013 Mount Etna volcano experienced intense eruptive activity at the summit craters, foremost at the New Southeast Crater and to a minor degree at the Voragine and Bocca Nuova (BN), which took place in two cycles, February-April and September-December. In this work, we mainly focus on the period between these cycles, applying a multiparametric approach. The period from the end of April to 5 September showed a gradual increase in the amplitude of long-period (LP) events and volcanic tremor, a slight inflation testified by both tilt and GPS data, and a CO2 flux increase. Such variations were interpreted as due to a gradual pressurization of the plumbing system, from the shallowest part, where LP and volcanic tremor are located, down to about 3-9km below sea level, pressure source depths obtained by both geodetic and CO2 data. On 5 September, at the same time as a large explosion at BN, we observed an instantaneous variation of the aforementioned signals (decrease in amplitude of LP events and volcanic tremor, slight deflation, and CO2 flux decrease) and the activation of a new infrasonic source located at BN. In the light of it, the BN explosion probably caused the instantaneous end of the pressurization, and the opening of a new vent at BN, that has become a new steady source of infrasonic events. This apparently slight change in the plumbing system also led to the gradual resumption of activity at the New Southeast Crater, culminating with the second lava fountain cycle of 2013
    corecore