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Abstract  

We study automatic localization and identification of African clawed frogs (Xenopus Laevis sp.) in digital 

images taken in a laboratory environment. We propose a novel and stable frog body localization and skin 

pattern window extraction algorithm. We show that it compensates scale and rotation changes very well. 

Moreover, it is able to localize and extract highly overlapping regions (pattern windows) even in the cases of 

intense affine transformations, blurring, Gaussian noise, and intensity transformations. The frog skin pattern 

(i.e. texture) provides a unique feature for the identification of individual frogs. We investigate the suitability 

of five different feature descriptors (Gabor filters, area granulometry, HoG1, dense SIFT2, and raw pixel 

values) to represent frog skin patterns. We compare the robustness of the features based on their 

identification performance using a nearest neighbor classifier. Our experiments show that among five 

features that were tested, the best performing feature against rotation, scale, and blurring modifications was 

the raw pixel feature, whereas the SIFT feature was the best performing one against affine and intensity 

modifications. 

Highlights 

 A stable frog localization and skin pattern window extraction method is introduced. 

 The method compensates for scale and rotation changes and blurring distortions. 

 The pattern window is stable to allow the use of raw pixel values as a feature. 
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1. Introduction 

The African clawed frog (Xenopus Laevis sp.), is the largest of the genus Xenopus which are the only frogs 

with clawed toes. It is native to Sub-Saharan Africa. After the 1960s, it was farmed and distributed widely for 

pregnancy tests and the pet trade. More recently owing to its genetic simplicity, it has been used as a model 

in development biology and it has become one of the standard experimental amphibians (Kay and Peng 

1991). However, releases from captivity and escapees have formed viable and invasive populations pan-

globally (Matthews and Brand, 2004). Moreover, owing to its highly adaptable and carnivore feeding, it 

dominates and endangers local species. It is listed as a threat to local species for Chile, UK and preventively 

controlled in the US, California (Measey et al., 2012). 

The field of image recognition has shown a rapid development in recent years. The capability to recognize 

entities is becoming crucial for many applications in different fields, such as surveillance, automation and 

control. Many recent studies are devoted to algorithms aiming at detection and recognition of objects, iris, 

or faces (Dalal et al., 2006; Lowe, 2004; Ma et al., 2003). However, the literature for automatic recognition or 

detection of insects, animals, or plants is quite rare. This study mainly concerns automatic recognition of 

African clawed frogs in a laboratory environment. However, the techniques and discussions reported here 

will be valuable for their detection, or localization, and identification in the wild. Moreover, it is as important 

for recognition of other skin- or fur-textured species since our models can be generalized. 

A system which is able to locate, detect, and recognize the African clawed frog (Xenopus Laevis sp.) can be 

used for counting, tracking or monitoring of the individuals. This is a time-consuming and difficult task when 

performed manually. Though there are different types of methods which could be used for identification, a 

non-invasive procedure is possible based on the unique skin patterns of the individual frogs (Hubrecht and 

Kirkwood, 2010). The observed color of the skin can change through time; however the skin pattern is stable. 

Observing the skin patterns (Figure 1) the first question that arises is whether the popular texture analysis 

descriptors will be successful in differentiating them. There are many texture analysis and classification 

studies in the literature (Chen et al., 1998; Mirmehdi et al., 2009; Wang and Yong, 2008). Moreover, a variety 

of techniques have been developed for measuring texture similarity (Huang and Dai, 2003; Manjunath and 

Ma, 1996). Most of these techniques rely on comparing values of what are known as second-order statistics 

such as the degree of contrast, directionality and regularity (Tamura et al., 1976); or periodicity, 

directionality and randomness. Alternative methods of texture analysis for image retrieval include the use of 



Gabor filters and fractals (Kaplan, 1999). Gabor filter is widely adopted to extract texture features from the 

images for image retrieval (Manjunath and Ma, 1996), and has been shown to outperform other wavelet 

transform based feature descriptors. 

However, recent advances on image representation have provided some new powerful feature descriptors 

which are applied to a wide range of recognition and classification problems. Popular ones include SIFT 

(Lowe, 2004), HoG (Dalal et al., 2006), and others (Mikolajczyk and Schmid, 2005). It is an interesting 

question whether these modern feature descriptors could be successful in X. Laevis skin pattern 

representation. 

While our main objective is to detect and recognize a frog’s identity, this study focuses mostly on the 

suitability of the different feature descriptors for the task. It extends our previous study (Cannavo’ et al., 

2012) in major ways: it tests and shows the stability of our skin pattern window extractor; it compares 

popular feature descriptors: Histogram of Gradients and Scale Invariant Feature Transform (HoG and dense 

SIFT) with Gabor filters, and morphological area granulometry; finally, given the stability of the pattern 

window extractor it questions whether it is possible to use a specifically located window of raw pixels as a 

feature descriptor. 

Our main approach can be summarized in four steps: localization of the frog body, skin pattern window 

extraction, feature extraction, and identification. The first step is necessary to localize and segment the body 

of the frog in the laboratory container; the second step is crucial to locate the central part (pattern window) 

of the frog’s skin; the third step consists of calculating the features of the pattern window; finally, the last 

step is the classification of the feature vector to find the closest match from a database of pre-recorded 

frogs. 

This paper is organized as follows. Our methodology comprised of the pre-processing of the images, 

localization of the frog body, the skin pattern region extraction algorithm, and the calculation of different 

feature descriptors are discussed in Section 2. The description of data and experimental results are given in 

Section 3. Discussions and conclusions are presented in Section 4 and 5, respectively. 

2. Methodology 

In our dataset, the frogs are pictured in random positions and orientations in a white plastic bowl container 

which is filled with water (Figure 1). The background is mostly comprised of the white container (bowl). The 

scale and the illumination conditions are uncontrolled and differ. The first part of the proposed algorithm is 

to analyze the frog position and its orientation. First, the image is thresholded to identify background (bowl) 

and foreground (frog) regions. Then the component with the largest area is chosen to be an estimate of the 

frog location. Then the localized body is further processed to extract a central square region which we name 



as the pattern window. This window is transformed (normalized) to be invariant to position, scale, and 

orientation changes. 

2.1 Frog localization 

In this stage, the grey level frog image is thresholded to obtain a binary image by using Otsu’s adaptive 

thresholding method (Otsu, 1979). Otsu's method searches exhaustively for the threshold that minimizes the 

intra-class variance (the variance within the class), defined as a weighted sum of variances of the two classes: 

  𝜎𝑃
2(𝑇) = 𝑃1(𝑇)𝜎1

2(𝑇) + 𝑃2(𝑇)𝜎2
2(𝑇)                                                       (1) 

, where the weights 𝑃𝑖 are the probabilities of the two classes separated by a threshold 𝑇, computed from 

the histogram as 𝑇, and 𝜎𝑖
2 variances of these classes. This method is robust to isolate the frog’s body from 

the background (in the described pictures), which has the white container as the background. In the obtained 

black and white image (b&w) the noisy small components are removed using a morphological area opening 

operation (Soille, 1999). Then, the holes in the binary image are filled by morphological reconstruction 

(Soille, 1999). After this, an erosion/opening operation is applied to smooth the borders. At the end of this 

process, the frog’s body is the component with the largest area in the b&w image. The morphological 

opening operation with a disk shaped structuring element that has a radius equal to the frog’s pseudo-radius 

provides a symmetrical body by removing the arms and legs. The pseudo-radius value is estimated from the 

area of the largest component. Then in order to calculate the orientation of the body the second order 

geometrical moments are calculated on binary image 𝑓(𝑥, 𝑦) (Hu, 1962). 

                                                                                            𝑚𝑝,𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

                                                  (2) 

The first order moments (𝑝 + 𝑞 = 1) give the coordinates of barycenter (i.e. center of mass), whereas the 

second order moment provides the orientation of the body. The line that crosses the barycenter of the body 

which has the angle obtained from frog’s orientation is considered as the body line of the frog. Figure 2 (a-e) 

demonstrates the steps from gray-scale conversion to the localization of the barycenter. 

2.2 Pattern region extraction 

Once the barycenter is located and the orientation of the body is estimated, the algorithm proceeds to seek 

a stable region in the frog’s back to prepare for the identification process. Despite the fact that the skin is 

patterned from head to the tip of the legs, we have considered the central part of the back which is relatively 

stable (compared to the legs and arms) and large (compared to the head). These considerations are also 

useful in locating the head of the frog: due to the stronger legs, the rear part of the body is bigger than the 

front part. Hence, we determine the head-side of the frog by calculating the projection of the b&w image 

along the body direction. In the projection, the lighter side and the tip are assigned to be the head/head-

nose region, whereas the heavier side and the tip are assigned as the rear region and the tail points, 



respectively. The head-tail localization is refined further with an optimization step, where we devised a 

sequential search algorithm that is inspired from the simulated annealing process which is a random-search 

technique for a minimum in a generalized system (Kirkpatrick et al., 1983). In our case, given the initial body 

orientation from the barycenter, it starts searching around with relatively high angle variations and then 

decreasing it to locate the optimal (orientation) angle of the body line which maximizes the head-tail 

distance (Figure 2(f)). A further improvement consists of using the simulated annealing optimization 

algorithm to adjust the head and tail coordinates to search for the best, in terms of symmetry, isosceles 

triangle for the head (Figure 2(g)). In fact, given a pair of points, head and tail, it is possible to pick out a 

triangle with vertices in the head-nose and frog’s side flanks. Flank points are initialized by the crossing 

points between the peripheral of the body and a line which passes from the center of the head-tail segment 

and that is perpendicular to the head-tail line. We measure the triangle symmetry by the difference between 

the two side edges formed by the head-flank points. We use the simulated annealing algorithm to find the 

most symmetric triangle: 

min
𝐻,𝑇

|𝐻𝐹1 − 𝐻𝐹2|                                                                                 (3) 

, where 𝐻 and 𝑇 stands for Head and Tail points, and 𝐻𝐹1 and 𝐻𝐹2 are the lengths of the segments 

between the head and the first flank found in the clockwise direction and the opposite one respectively. 

To avoid flipping or rotation problems, the orientation coherence of flank points is assured by the sign of the 

cross-product of the found vectors 𝐻𝐹1̅̅ ̅̅ ̅̅  and 𝐻𝐹2̅̅ ̅̅ ̅̅ . In case of a negative magnitude the flank points are 

swapped. 

The last step of the algorithm extracts a square window (i.e. pattern region). This is done by locating the two 

flanks of the body and the other two corners on the body line as the corners of the square (Figure 2(h)). 

Then the square region obtained is rotated to reach the standard position of 90 degrees (the frog in vertical 

position facing to the top of the image frame and tail to the bottom). It is then resized to a standard size of 

200x200 pixels by using a bilinear interpolation. 

2.3 Stability of the skin pattern region extractor 

An ideal pattern region extractor must find the same pattern region window for the same frog under 

different conditions. We modeled these different conditions with some transformations and distortions: 

rotation, scale change, affine distortion, blurring, Gaussian noise, and pixel intensity change. The set of 

rotations included 10 different angles in [0,𝜋 2⁄ ]; the scale set included scaling with different factors (0.25, 

0.5, 0.75, 1.25); the affine set included transformation with different affine coefficients (-0.25, -0.135, -0.02, 

0.02, 0.135, 0.25), the blur modification iterated from (1 to 5) with an increasing size box mean filter; and 

Gaussian noise of mean 0 and increasing variance values (0.0005, 0.0010, 0.0015, 0.0020, 0.0025) were 



added to introduce distortions. The pixel intensity modification was simply performed by a contrast 

stretching operation: compute the minimum and maximum values of the image; and remap all pixel values 

such that the new minimum and the new maximum will be 0 and 255, respectively. Our choice for these 

modifications is mainly motivated by the fact that the frog’s body is moving, it is flexible and it was pictured 

underwater. Furthermore, the frog skin can change colors and the identification can take place under 

different illumination conditions at different times, which will cause pixel intensity changes. Figure 3 shows 

examples of pattern window after some of these modifications were applied to the original image of one 

example frog. While the blurring and scaling effects are obvious, one must carefully inspect to see slight 

differences in the squares extracted from the rotation and affine transformed images. In this example, 

rotation causes apparent differences in the bottom regions, whereas the affine transform clearly deforms 

the shapes. In addition, a group of bubbles seen in the left top corner display a translation with respect to 

the original. Nevertheless, a careful observer can still state that these patterns belong to the same individual 

frog. 

We have examined all of the patterns that were extracted under different modifications and intensities. We 

observed that the algorithm was successful in the sense that the pattern windows of the original and 

modified images overlapped significantly in almost all of the cases. However, in only few cases (4 in 1800), 

the affine transform distortion caused the pattern region extractor to locate badly positioned pattern 

windows. 

To quantifiably measure the robustness of the pattern window extractor, we have used a simple error metric 

Mean Square Error (MSE) which is widely used for measuring the difference of two images from each other 

(Wang et al., 2004): 

                                                       𝑀𝑆𝐸(𝐼0, 𝐼1) =
1

𝑤ℎ
∑(𝐼0(𝑘) − 𝐼1(𝑘))

2
𝑤ℎ

𝑘=1

                                                           (4) 

, which calculates the MSE between two monochromatic images (𝐼0, 𝐼1) that are of size [𝑤𝑥ℎ]. The MSE was 

calculated individually for each frog and then averaged to obtain a single number for each modification at 

each intensity (or parameter). A lower MSE value for a modification suggests that the newly found pattern 

window from the modified image is close to the one of the original. A lower average MSE indicates that this 

is the case for the majority of the frogs in our database. However, to ease interpretation of the MSE values 

we have added a control value which shows the MSE value obtained with a transformed image of an already 

extracted window. This control value shows the difference created by the application of the modification; 

that is a value we would expect to observe if the pattern window extractor were not adjusting to the 

modification. Figure 4 shows the MSE plots for the different modifications: (a) with respect to the rotation 

angle, (b) with respect to the different affine transformation coefficients, (c) with respect to the different 



scale coefficients, (d) with respect to the increasing blur iterations, Gaussian noise variance, and contrast 

stretching operations. The latter does not have any control due to the fact that there is no blurring, noise, or 

illumination change compensation in the pattern window extractor algorithm. However, these modifications 

also distort the input images and therefore they will affect the representation performance of the features. 

It can be seen that the pattern window locater successfully compensates for rotation and scale changes in all 

the tested angles and scaling factors respectively (Figure 4(a, c)). It is also clear from the MSE plots that our 

toughest tests for the features are against affine and the intensity modifications. Particularly, the affine 

transformation modifications using larger coefficients caused the pattern window to produce larger MSE 

errors than the control (Figure 4(b)). This is mainly introduced by the procedure in the algorithm which 

geometrically estimates the body size and orientation to normalize the angle and size. 

 

2.4 Feature extraction 

The next step in our method is to extract features of the normalized pattern window. We studied the 

suitability of Gabor filters (Lianping et al., 2004), Histogram of Gradients (Dalal et al., 2006), SIFT and dense 

SIFT (Liu et al., 2011), area granulometry (Meijster and Wilkinson, 2001), and the pattern window pixel values 

as feature descriptors. 

2.5 Gabor filter 

Feature description in this approach is done by filtering the image with a bank of filters, each filter having a 

specific frequency and orientation. The filtering process consists of a convolution between the image and the 

filter. Then, the feature values are extracted from these filtered output images. A Gabor filter can be 

described by the following two-dimensional function (Feichtinger and Strohmer, 1998): 

                                                                       𝑔(�̅�, �̅�) = 𝑒
−

�̅�2+�̅�2

2𝜎2 𝑐𝑜 𝑠(2𝜋𝑓�̅�)                                                                (5) 

                                                                    
�̅� = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃)

�̅� = −𝑥𝑠𝑖𝑛(𝜃) + 𝑦𝑐𝑜𝑠(𝜃)
                                                                           (6) 

, where �̅�, �̅� are the rotated coordinates, and 𝑓 is the frequency. As suggested in the previous works 

(Lianping et al., 2004), the variance 𝜎 can be chosen to be equal to the period 1/𝑓. Convolutions with the 

filters of different size and orientations produce equally numbered output images: 

                                                            𝐺(𝑋, 𝑌) = |∑ ∑ 𝐼(𝑋 − 𝑥, 𝑌 − 𝑦)𝑔(𝑥, 𝑦)

𝑦𝑥

|                                               (7) 

The features extracted from these output images are the averages and the standard deviation on the non-

overlapping cells of an 𝑛𝑥𝑛 grid of the image (Lianping et al., 2004; Manjunath and Ma, 1996). As it can be 



expected, the Gabor filter responses are sensitive to changing orientation and scale. The frequencies used in 

the Gabor filters have been chosen by commonly used octave progression pattern as 1/4, 1/16, and 1/32. For 

the orientation, we used four equally spaced angles in the range (0° and 90°). We have tested several 

variations for the number of frequencies and orientations to observe the effects on the performance, as we 

report in Section 3. 

 

2.6 Granulometry 

Feature description in this approach is done by using the granulometry spectrum of the grayscale image. 

Granulometry was introduced by Matheron (1975) as a tool to extract size distribution from binary images. 

By performing a series of morphological openings with a family of Structuring Elements (SE) of increasing 

size, we can obtain the granulometry function which maps each SE to the amount of image volume, i.e. sum 

of gray levels removed after the opening operation with the corresponding SE. However, the choice of SE is 

important and the computational time required for the morphological opening with each SE is high. On the 

other hand, the computation of area granulometry is quite efficient and was employed in some recent 

studies as a feature descriptor (Rao and Dempster, 2001; Tek et al., 2009 and 2010). Area granulometry using 

morphological area openings (Soille, 1999) is sensitive to the area of the connected components in the 

consecutive threshold levels, where it extracts the distribution of the areas of the components. The area 

granulometry (f ag) of an image can be defined as the difference between the sums of the pixel values of the 

output images after consecutive area opening (𝛾𝑇
𝑎) operations with area threshold 𝑇. The consecutive area 

thresholds are of an increasing order 𝑇𝑘 > 𝑇𝑘−1: 

                                                              𝑓𝑎𝑔(𝑘) = ∑ 𝛾𝑇𝑘−1

𝑎 (𝐼)

𝐼

− ∑ 𝛾𝑇𝑘

𝑎 (𝐼)

𝐼

                                                                  (8) 

Due to the properties of morphological area opening (Soille, 1999), area granulometry is invariant to 

translation and rotation. However, it is sensitive to scale and affine variations. The area granulometry 

extracts the size distribution of the bright components, whereas anti-granulometry extracts the distribution 

of dark components by simply calculating the same function (8) on the negative of the grey level image 

(Meijster and Wilkinson 2001). We calculate area granulometry for 𝑁 linearly spaced area thresholds in the 

range (1 ≤ 𝑇𝑘 ≤ [𝑤𝑥ℎ/4]) where 𝑤 and ℎ are the width and height of the local window, respectively. The 

values were then normalized by dividing them with 𝑤𝑥ℎ/4. Together with the anti-granulometry values, the 

granulometric feature descriptor forms a 2𝑁 element vector. We comment on the effects of the parameter 

𝑁 in Section 3. 

2.7 Histogram of gradients (HoG) 



Histogram of the local gradients’ feature is based on the idea that the local distribution of the gradient 

orientations can represent the local appearance (Dalal et al., 2006). It is simply a histogram of the local 

gradient orientations on a dense grid of positions that was determined by the size of the local cells (i.e. 

regions). As Dalal et al. (2006) point out that HoG was sensitive to gradient computation kernels; however, 

for their problem (human detection) the simplest kernel (e.g. [-1 1] and [-1 1]T) seemed to work best. HoG is 

proposed to be invariant to translations and rotations which are small with respect to the local cell size. We 

have used Matlab vl_feat toolbox for the (Vedaldi and Fulkerson, 2008) implementation of the HoG method 

with default number of orientation bins which divide the 0-π interval to nine linearly spaced bins. We report 

our findings on the effects of cell size parameter in Section 3. 

2.8 SIFT and dense SIFT 

Scale Invariant Feature Transform (SIFT) has become quite a popular descriptor quick after it was introduced 

by Lowe (2004). Similar to its late variant HoG, the SIFT descriptor calculates the local orientation histograms 

in a local window; however instead of calculating a single 1-D histogram for a fixed sized cell, it calculates 16 

histograms (from sub-regions) of cells of varying size and orientation. In addition, the center of the cell 

where the descriptor will be extracted is not fixed; instead it is determined by the local extrema of the 

Gaussian scale-space. This approach creates a varying number of feature descriptors per image where the 

descriptors are localized only on some salient points (i.e. keypoints). Lowe (2004) proposes that the SIFT 

descriptors are invariant to scaling, rotation, translation, and partially invariant to affine transformation and 

illumination changes. 

On the other hand, the dense SIFT (Ce et al., 2011) approach overrides the keypoint localization procedure 

and forces the descriptor to be extracted from a regular grid of cells in fixed orientations. Thus, similar to the 

HoG, the cell size parameter determines the number of feature descriptors extracted from the image. The 

reason that we focused on dense SIFT besides the original (Lowe’s keypoint localizer SIFT) is due to the fact 

that the pattern region is already refined to a degree where all pixel locations are informative. We have used 

Matlab vl_feat toolbox (Vedaldi and Fulkerson, 2008) implementation of dense SIFT with default bin size of 

(4x4); default number of orientations, which divide the 0-π interval into eight linearly spaced bins. We report 

on the effects of varying cell sizes in Section 3 and use the SIFT with default parameters (Vedaldi and 

Fulkerson, 2008). 

2.9 Raw pixel values 

Human observers can differentiate frog skin patterns easily by the naked eye. So one important question in 

our study is whether we really need an abstract and second order features or is it possible to use the set of 

raw pixel values of the pattern window as a feature descriptor. The feasibility of this depends on the stability 

of the pattern window extractor, which can be regarded as the feature extractor in this case. The pattern 



window extractor can be regarded as stable if it locates the same square region for the same frog in every 

run and independent of the conditions whatever results in a different appearance. 

To study the performance of the raw pixel feature in different scales, we introduced a scale reduction factor 

𝑛 which reduces the dimensions of the pattern window image by a factor of 2𝑛, which allows us to control 

the dimensionality of the feature descriptor. 

 

3. Results  

The original dataset included 60 images of varying sizes ([1592x1194] or [1280x960]) of African clawed frogs. 

All of the images were taken under similar conditions where the frog is alive; lies in a white box; and in water 

(Figure 1). While the training set (database) contained all of the original pictures of 60 frogs, six different test 

sets included 1860 modified test pictures in total: rotation with 10 different angles (60*10), affine transform 

with 6 different coefficients (60*6), scale with 4 different factors (60*4), blur with 5 different iterations 

(60*5) and Gaussian noise with 5 different variance values (60*5). In order to evaluate the performance of 

the features we have utilized a nearest neighbor classifier based on L1-norm distance (Dasarathy, 1991). For 

each modification test set and for each feature, we count and compare the percentage of frogs that were 

correctly recognized (i.e. identified with the original). Thus, a feature calculated from the pattern window of 

a modified input picture is identified as the one which has the shortest L1 distance among all in the database.  

In brief, the results have shown that the raw pixel window feature was the best, compared to the other four 

competitors. However, it is not as good as SIFT in affine transform and performed the worst in intensity 

modification tests, which prevents us from stating that it is a winner. The averaged recall/precision rates 

among all tested pictures in different tests were as follows: rotations-raw (98.6/98.5%), scaling-raw 

(95.4/96.3%), affine-SIFT (93.3/94.7%), blurring-raw (97.7/96.9%), noise-SIFT (99/99.2%), and intensity-HoG 

(98.3/97.5%). Table 1 shows the best precision/recall trade-offs for different features for different tested 

parameters. The parameter tests and details are explained further below. 

We were able to calculate the average precision/recall values for the different features with different 

parameters; however, for clearness, we report here only the ones which produced a trade-off: resolution 

factor for the raw pixel value window; number of bins for the granulometry; cell size for HoG; cell size, 

frequencies and scales for Gabor features; cell size for dense SIFT; and SIFT was used with default parameters 

of the VLFEAT toolbox (Vedaldi and Fulkerson, 2008). 

Figure 5-10 show the average precision-recall points calculated for the different tests, for the features of 

different parameter settings. The individual points are indexed according to their parameter settings and 

markers differ with respect to the different features. The increasing index value of the markers denotes 



different parameters for the different features: the window resolution decrease for raw features ((200x200, 

100x100, 50x50, 25x25, 12x12, 6x6, 3x3); for Hog and dense SIFT the cell size decreases (100,50,20,10); for 

the granulometry feature the number of bins decrease (30,20,12,7,6,5); and for the Gabor filters the cell size 

parameter (20,50,100) increase. Note that the individual precision/recall points that are plotted in these 

figures must not be interpreted as samples of a single precision-recall curve. Rather, each point probably lies 

on a different curve, which we could not reconstruct completely due to the fact that the NN classification 

does not generate a posterior Bayesian probability to be used for a decision threshold. 

Looking at Figures 5 to 10, the first and the most important observation was that the raw pixel feature 

performed better compared to all other features in rotation, scaling and blurring tests. We can also observe 

that the coarser resolutions (reduced size windows) provided better performing features against the finer. 

An exception to this was the unacceptably poor performance in the intensity modification test set (Figure 

11). However, a similar relation (cell size versus performance) was also observable in the winner of this test 

(HoG) and the granulometry features. 

In terms of the performance, the raw window feature was closely followed by the SIFT feature with two wins 

in very important tests (Figure 7 and 9), despite whilst running with the default parameters out of the 

VLFEAT toolbox (Vedaldi and Fulkerson, 2008). 

HoG was the winner of the intensity modification test (Figure 10) with larger cell sizes, despite not 

performing as well for the noise and affine modification tests (Figure 7 and 9). 

Except for the intensity modification test (Figure 10), the granulometry feature did not performed well. In 

this test, increasing the number of bins had an inverse effect on its performance. 

The Gabor filter feature performed the best against Gaussian noise test; however, it was not much effective 

for the rest. We have experimented on different number of scales, orientations, and cell sizes (to calculate 

the mean and standard deviation of the sub-regions). We observed that increasing the number of scales 

beyond three did not affect the results, whereas doubling orientations from four to eight did result in a slight 

improvement. In most cases, increasing the cell size had an inverse effect on its performance. Similar to 

Gabor, the dense SIFT under performed. Smaller cell sizes were slightly better than the larger ones. 

SIFT outperformed all other results against affine modification (Figure 7). Note that SIFT uses keypoint 

localization and produces a variable number of feature vectors (i.e. histograms) for each image. Hence, only 

for the SIFT features, we had to utilize the so called SIFT feature matching approach, rather than the nearest 

neighbor classifier. The SIFT feature matching rejects some matching features by checking their relative value 

with the respect to the best match. This approach was proposed by Lowe (2004) and is implemented in 

(Vedaldi and Fulkerson, 2008). 



4. Discussions 

Overall, the results show that there was no clear winner which can perform best for all modification tests. 

However, the raw pixel feature could be the best candidate if it did not perform very poorly for the intensity 

modifications. Considering that a flexible (and moving) frog is to be pictured underwater, in an uncontrolled 

environment, perhaps the most important robustness tests were the affine and intensity modifications. 

SIFT performed best against affine modifications, which is most probably due to the feature point (keypoint) 

selection strategy, which prefers affine invariant feature points. This robustness against affine modifications 

is most valuable when we consider that two pictures of a live frog may not be taken from the exact same 

view angle.  

As we saw from the stability experiments, the scale and rotation modifications are compensated reasonably 

well by the pattern region extractor. This is also confirmed by the rotation and scale sensitive features (e.g. 

raw pixels, Gabor, HoG) performing well against these modifications.  

To improve the raw pixel feature performance under intensity modification, it may be possible to store and 

use for matching more than one appearance model per frog. In addition, it is also possible to use it jointly 

with a different feature(s), for which HoG, or SIFT seem to be the appropriate candidates. 

Finally, the average time for calculation of the different features were in the following order: raw pixels, HoG, 

area granulometry (<100ms), dense SIFT, followed by Gabor filters (<1s). This suggests that it is quite feasible 

to think of a joint feature scheme for the classification. 

5. Conclusions 

In this paper, we studied the problem of recognizing African clawed frogs’ identities from their skin patterns. 

We proposed a novel, and as far as our literature search is accurate, the only frog body localization and skin 

pattern region extraction algorithm reported in the open literature. We tested and reported its accuracy and 

stability, which showed that it is quite successful in compensating scale and rotation changes. Moreover, our 

qualitative observations showed that it extracts majorly overlapping windows even in the case of intensive 

modifications. 

The pattern of the frog skin is a unique identifier which is used for manual identification by the experts. Our 

aim was to find the best descriptor to represent the skin patterns. In addition we tried to seek an answer the 

question whether we needed an abstract representation at all. Hence, we have compared five candidate 

features (Gabor filters, area granulometry, HoG, dense SIFT, and raw pixel values). The detailed experiments 

using a nearest neighbor classifier showed that the raw pixel values of the extracted pattern window (in 

coarse resolutions) was the most effective feature, thanks to the stability of the pattern window extractor. 



However, it performed the worst against the intensity modification test. In addition, it is not as robust as the 

SIFT against affine modifications, which can certainly result in poorer recognition performance during a real 

use scenario. 

It may be possible to create a joint feature using the raw pixel values and one of the other features, for which 

the HoG, and SIFT features seem to be good candidates. An important future work is to test our algorithm 

and features on a large database of African clawed frogs which include pictures taken at different times with 

varying conditions. 

The focus of this study is on the automatic recognition of African clawed frogs in a laboratory environment. 

However, we believe that this work can be extended to the natural habitats by an additional pre- frog 

detection step which must locate frogs in uncontrolled environments. The generalized visual object detectors 

can be used for this purpose. Subsequently, our technique for locating the skin pattern region window can be 

used. Since it works for frog bodies which are very flexible, it can be adapted to other skin-textured or fur-

textured species if adapted to the respective body shapes and geometries. Moreover, the comparison of 

various features presented here must be relevant to the different skin-fur textures. 
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FIGURE & TABLE CAPTIONS 

Figure 1 Example images from the X. Laevis image set. 

 

Figure 2 Pattern window (back-square) localization process: (a)-(b), the original RGB image is converted 

to grayscale; (b)-(c), the grayscale image is thresholded; (c)-(d), the morphological opening operation 

with a disk-shaped structuring element which has a radius equal to the frog’s pseudo-radius (calculated 

from the area) provides a symmetrical body by removing the arms and legs; (d)-(e), the barycenter and 

the orientation of the body are calculated, the line crossing the barycenter of the body which has the 

angle obtained from frog’s orientation is considered as the body line of the frog; (e)-(f), simulated 

annealing process to improve the head localization by maximizing the head-tail distance; (f)-(g), adjust 

the head and tail coordinates by searching for the best isosceles triangle for the head; (g)-(h), extract a 

square from the back by locating the two flanks of the body and the other two corners on the body line 

as corners of the square; (h)-(i), resize and normalize extracted square to be the pattern window. 

 

Figure 3 Extracted pattern windows after different modifications applied to the original image: (a) 

Original, (b) rotation angle of 65o, (c) scaling by a factor of 0.25, (d) affine transform with coefficient 

(0.25), (e) contrast stretch, (f) blurring iteration 5. 

 

Figure 4 MSE error of the pattern window extractor against different modifications: (a) with respect to 

the different rotation angles, (b) with respect to the different affine transformation coefficients, (c) with 

http://www.vlfeat.org/


respect to the different scale coefficients, (d) with respect to the increasing blur iterations, Gaussian 

noise variances and illumination change by contrast stretching. 

 

Figure 5. The rotation test performance of each feature with different parameters. Precision and recall 

rates were averaged for 60 frogs in the training test. The individual points are indexed according to their 

parameter settings; and markers differ with respect to the different features. By the increasing index 

value, the window resolution decrease for raw features ((200x200, 100x100, 50x50, 25x25, 12x12, 6x6, 

3x3); for Hog and dense SIFT the cell size decrease (100,50,20,10); for granulometry the number of bins 

decrease (30,20,12,7,6,5); and for Gabor filters the cell size parameter (20,50,100) increase. 

Figure 6. The scale test performance of each feature with different parameters. Precision and recall rates 

were averaged for 60 frogs in the training test. Refer to Figure 5 caption for the explanation of the 

parameters corresponding to the different marker indexes. 

Figure 7. The affine distortion test performance of each feature with different parameters. Precision and 

recall rates were averaged for 60 frogs in the training test. Refer to Figure 5 caption for the explanation 

of the parameters corresponding to the different marker indexes. 

Figure 8. The blurring test performance of each feature with different parameters. Precision and recall 

rates were averaged for 60 frogs in the training test. Refer to Figure 5 caption for the explanation of the 

parameters corresponding to the different marker indexes. 

Figure 9. The noise test performance of each feature with different parameters. Precision and recall rates 

were averaged for 60 frogs in the training test. Refer to Figure 5 caption for the explanation of the 

parameters corresponding to the different marker indexes. 

Figure 10. The intensity modification test performance of each feature with different parameters. 

Precision and recall rates were averaged for 60 frogs in the training test. Refer to Figure 5 caption for the 

explanation of the parameters corresponding to the different marker indexes. 

 



Table 1 The best average precision/recall rates for each feature/modification pair. The best (green) and 

worst (yellow) performing features were marked for every modification. Note that the parameters of the 

best performing feature can differ among the rows. 

 

 


