342 research outputs found

    Fractionation of human immune Îł-globulin

    Get PDF
    Equine and bovine serum proteins have recently been fractionated by means of a physical method utilizing an electrophoretic adaptation of the principles of the Clusius column (l-4), first described and tested by Kirkwood (5) and Nielsen (6). The method of electrophoresis-convection has now been applied to the fractionation of human Îł-globulin. The Îł-globulin was prepared by ethanol fractionation (7) from the plasma of individuals hyperimmunized to Hemophilus pertussis organisms. The resulting fractions of Îł-globulin have been characterized electrophoretically, and the protective antibody activity and agglutinin titer have been measured

    Oceanic inside corner detachments of the Limassol Forest area, Troodos ophiolite, Cyprus

    Get PDF
    Flat-lying extensional detachment faults have been imaged in the inside corner regions of ridge-transform intersections on the Mid-Atlantic Ridge. Exposed detachment surfaces are 10 km or more across, and are corrugated in the direction of spreading, as are continental detachments. Beneath the detachments lie core complexes of peridotite and gabbro; these are overlain by blocks of crustal material. We argue here that similar detachments are an essential component of the Limassol Forest area of the Troodos ophiolite in Cyprus, which lies south of the Arakapas Fault zone, previously recognized as a palaco-transform fault, and here interpreted as a transform fault that evolved into a fracture zone. In the Limassol Forest, core complexes of mantle peridotite can be shown to have been exposed at the sea floor, or to have been covered by overlapping crustal blocks, separated from the peridotite core and from each other by low-angle extensional faults. The extension can be shown to have occured shortly after crustal construction, and the already extended terrain was then intruded by swarms of dykes and plutons. We interpret these relations as arising when crust is constructed in an inside corner area, extended by detachment faulting, deformed further during slip along the transform, and then intruded by new magma as it passes the second spreading centre. The structurally deeper parts of the crustal blocks that overlie the detachment lie broadly towards the west, indicating that the spreading axis lay in that direction. The ophiolite north of the transform is much less extended, and we interpret this as a section of outside corner crust. In this interpretation, the Troodos ophiolite formed to the east (in its current orientation) of a ridge-transform-ridge intersection, in which the transform had a dextral offset and sinistral slip. The part of the ophiolite that forms the Limassol Forest was produced at the western inside corner, and spread eastward until it passed the second spreading axis, at which point the ophiolite north of the Arakapas Fault was created and welded to the Limassol Forest when the transform became a fracture zone.published_or_final_versio

    Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge

    Get PDF
    Author Posting. © Nature Publishing Group, 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 442 (2006): 440-443, doi:10.1038/nature04950.Oceanic core complexes are massifs in which lower crustal and upper mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. A new survey of the Mid-Atlantic Ridge (MAR) near 13°N reveals a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. The new data document the topographic characteristics of actively-forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically-recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the MAR suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.This work was supported by the National Science Foundation

    3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation

    Get PDF
    Interest in producing biofuels from renewable sources has escalated due to energy and environmental concerns. Recently, the production of higher chain alcohols from 2-keto acid pathways has shown significant progress. In this paper, we demonstrate a mutagenesis approach in developing a strain of Escherichia coli for the production of 3-methyl-1-butanol by leveraging selective pressure toward l-leucine biosynthesis and screening for increased alcohol production. Random mutagenesis and selection with 4-aza-d,l-leucine, a structural analogue to l-leucine, resulted in the development of a new strain of E. coli able to produce 4.4 g/L of 3-methyl-1-butanol. Investigation of the host’s sensitivity to 3-methyl-1-butanol directed development of a two-phase fermentation process in which titers reached 9.5 g/L of 3-methyl-1-butanol with a yield of 0.11 g/g glucose after 60 h

    Joint Effects of Febrile Acute Infection and an Interferon-Îł Polymorphism on Breast Cancer Risk

    Get PDF
    BACKGROUND: There is an inverse relationship between febrile infection and the risk of malignancies. Interferon gamma (IFN-γ) plays an important role in fever induction and its expression increases with incubation at fever-range temperatures. Therefore, the genetic polymorphism of IFN-γ may modify the association of febrile infection with breast cancer risk. METHODOLOGY AND PRINCIPAL FINDINGS: Information on potential breast cancer risk factors, history of fever during the last 10 years, and blood specimens were collected from 839 incident breast cancer cases and 863 age-matched controls between October 2008 and June 2010 in Guangzhou, China. IFN-γ (rs2069705) was genotyped using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using multivariate logistic regression. We found that women who had experienced ≥1 fever per year had a decreased risk of breast cancer [ORs and 95% CI: 0.77 (0.61-0.99)] compared to those with less than one fever a year. This association only occurred in women with CT/TT genotypes [0.54 (0.37-0.77)] but not in those with the CC genotype [1.09 (0.77-1.55)]. The association of IFN-γ rs2069705 with the risk of breast cancer was not significant among all participants, while the CT/TT genotypes were significantly related to an elevated risk of breast cancer [1.32 (1.03-1.70)] among the women with <1 fever per year and to a reduced risk of breast cancer [0.63 (0.40-0.99)] among women with ≥1 fever per year compared to the CC genotype. A marked interaction between fever frequencies and the IFN-γ genotypes was observed (P for multiplicative and additive interactions were 0.005 and 0.058, respectively). CONCLUSIONS: Our findings indicate a possible link between febrile acute infection and a decreased risk of breast cancer, and this association was modified by IFN-γ rs2069705

    Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5N

    Get PDF
    This is the accepted manuscript. An edited version of this paper was published by AGU. Copyright 2014 American Geophysical Union.A multifaceted study of the slow-spreading Mid-Atlantic Ridge (MAR) at 16.5ÂşN provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ~50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, non-corrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal one other detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multi-scale corrugations are observed 2-3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6Âş) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low-angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust > 2 Ma indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.This work was supported by the National Science Foundation grant number OCE-1155650

    Central role of detachment faults in accretion of slow-spreading oceanic lithosphere

    Get PDF
    Author Posting. © Macmillan Publishers, 2008. This is the author's version of the work. It is posted here by permission of Macmillan Publishers for personal use, not for redistribution. The definitive version was published in Nature 455 (2008): 790-794, doi:10.1038/nature07333.The formation of oceanic detachment faults is well established from inactive, corrugated fault planes exposed on seafloor formed along ridges spreading at less than 80 km/My1-4. These faults can accommodate extension for up to 1-3 Myrs5, and are associated with one of two contrasting modes of accretion operating along the northern Mid-Atlantic Ridge (MAR). The first is symmetrical accretion, dominated by magmatic processes with subsidiary high-angle faulting and formation of abyssal hills on both flanks. The second is asymmetrical accretion involving an active detachment fault6 along one ridge flank. An examination of ~2500 km of the MAR between 12.5 and 35°N reveals asymmetrical accretion along almost half of the ridge. Hydrothermal activity identified to date in the study region is closely associated with asymmetrical accretion, which also exhibits high-levels of near continuous hydroacoustically and teleseismically recorded seismicity. Enhanced seismicity is probably generated along detachment faults accommodating a sizeable proportion of the total plate separation. In contrast, symmetrical segments have lower levels of seismicity, which concentrates primarily at their ends. Basalts erupted along asymmetrical segments have compositions that are consistent with crystallization at higher pressures than basalts from symmetrical segments, and with lower extents of partial melting of the mantle. Both seismic and geochemical evidence indicate that the axial lithosphere is thicker and colder at asymmetrical sections of the ridge, either because associated hydrothermal circulation efficiently penetrates to greater depths, or because the rising mantle is cooler. We suggest that much of the variability in seafloor morphology, seismicity and basalt chemistry found along slow-spreading ridges can be thus attributed to the frequent involvement of detachments in oceanic lithospheric accretion.Supported by CNRS (JE), NSF (DKS, HS, JC, CL and SE), WHOI (JE, DKS, HS and JC), Harvard University (JE, CL and SE), Univ. of Leeds (JC), and MIT (JE)

    A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples

    Get PDF
    It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
    • …
    corecore